Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание Вклады Восточный Банк

Что такое простой и сложный проценти чем они отличаются

Понятие простых и сложных процентов — один из самых важных уроков по финансовой грамотности, которые вы должны знать. Они встречаются в нашей жизни повсюду: от ежедневных покупок (кэшбек, бонусы) до инвестирования (проценты на депозит, дивиденды, комиссии и т.д.) и оказывают незаметное, но существенное влияние на ваш кошелек на длинной дистанции. Чтобы наглядно увидеть различия между простыми и сложными процентами, давайте рассмотрим примеры.

Простой процент — прибыль в % начисляется только на первоначальную сумму вклада и сразу выводится.

Допустим, вы открыли депозит 10000$ под 10% годовых, проценты начисляются раз в год. По схеме простого процента каждые 12 месяцев вы будете получать 1000$ прибыли, но она не остаётся на депозите и сразу же выводится. В итоге прирост прибыли будет выглядеть так:

Всё «просто» — каждый год плюс тысяча в карман. Простой процент используется в случаях, когда база начисления процентов не изменяется. Это могут быть специальные банковские депозиты, проценты по кредиту. Также простой процент используется, когда инвестор регулярно выводит прибыль — в каждый период времени работает первоначальная сумма.

Сложный процент — проценты начисляются на первоначальную сумму вклада плюс всю полученную до этого прибыль. Понятия «реинвестирование» и «капитализация» по сути означают использование сложного процента.

Для сравнения пусть будет тот же депозит 10000$ под 10%, но банк в этот раз разрешает оставить прибыль на счёте. Вот что произойдёт с вкладом за 10 лет:

В первый год разницы нет — всё та же тысяча, но поскольку сумма на депозите теперь растёт, уже на втором году прибыль увеличивается: 2100$ вместо 2000$, за третий год 3310$ вместо 3000$ и так далее. За 10 лет доходность нашего депозита составила 159% вместо 100% когда мы выводили прибыль. Неплохая прибавка, не так ли? А вот что случится еще через несколько десятилетий:

Впечатляет! Чем дольше открыт депозит, тем сильнее работает эффект сложного процента — за 50 лет можно увеличить депозит не в 6, а более чем в 100 раз. Вот как это выглядит на графике:

без капитализации депозит растёт линейно, а с капитализацией — по экспоненте

Теперь киношные истории про забытые банковские счета, на которых накопились миллионы долларов выглядят вполне реальными 🙂 Конечно, 50 лет это много, но правило сложного процента неплохо работает и на более коротких промежутках времени — всё зависит от доходности вклада.

Думаю, суть понятна, теперь давайте пройдемся по математической стороне вопроса, а потом рассмотрим несколько типичных примеров задач.

Подходы к решению задач про вклады и кредиты

На ЕГЭ по математике в 11 классе 17 задание вызывает у учащихся затруднения при решении. Поэтому необходимо готовить их к решению подобных задач: уметь решать задачи на проценты, строить математическую модель (составлять по условию задачи уравнение или неравенство) и исследовать ее, знать и понимать теоретическую часть.

При решении задач на проценты, важно понимать:

1) как перевести проценты в дробь, например:

14% – это 0,14

r % – это 0,01*r =  0,01r.

Иногда удобно записывать проценты в виде обыкновенных дробей:

14% –  это 14/100

 r % – это   r/100

2)если число увеличивается на 15%, значит оно увеличивается в   1 0,15 = 1,15 (раз).

Или рассуждаем по-другому: было – 100%, стало — 115%.       115% : 100% =1,15 (раз).

Если число увеличивается на r %, значит оно увеличивается в (1 0,01r ) раз.

Теоретическая часть про вклады.

Вклад — это  денежная сумма, которую банк принимает от вкладчика, в целях хранения данных средств и начисления на них процентов (дохода от вклада). Доход по вкладу выплачивается в денежной форме в виде процентов.

Начисление процентов может производиться следующим образом:

  • ежемесячно – проценты прибыли прибавляются к основному вкладу каждый месяц.
  • к концу срока – проценты прибыли присоединятся к основной сумме вклада в конце срока вклада.
  • в иной срок, например, ежеквартально (проценты начисляются каждые 3 месяца), либо каждые полгода, либо еженедельно.

Если человек открыл вклад в банке в сумме А рублей под r % на определенный период времени, то  по окончании срока  его сумма увеличится на r% или в (1 0,01r) раз и будет равна А*(1 0,01r ) рублей .

Капитализация процентов по вкладам представляет собой ежемесячное или ежеквартальное причисление процентов на банковский счёт. Таким образом, в следующем периоде проценты будут начисляться уже на большую сумму, что увеличит итоговую прибыль. В народе это называют “проценты на проценты”, в финансах – “сложные проценты”. Другими словами, капитализация процентов – это процесс, при котором доход по вкладу начисляется частями на протяжении времени хранения денег в банке. Если  человек положил А рублей в банк с учетом капитализации процентов  под r % годовых, то каждый месяц ему  по вкладу начисляется r%/12

Читайте также:  Как рассчитать депозитный вклад с пополнениями и снятиями

Формула, по которой рассчитывается сумма вклада с учетом  капитализации процентов  под  r % годовых:  

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

C – сумма вклада с учетом  капитализации процентов.

A – первоначальная сумма.

n – время хранения денег в банке ( количество месяцев).

Теоретическая часть про кредиты.

Потребительский кредит (заем) – денежные средства, предоставленные кредитором заемщику на основании кредитного договора, договора займа.

Заемщик – физическое лицо, обратившееся к кредитору с намерением получить потребительский кредит (заем).

Тело кредита – это сама сумма кредита, без учета процентов.

Взяли, например, 100 000 рублей – это тело, на него начисляются проценты.

Аннуитентный способ погашения кредита является более распространенным для большинства пользовательских кредитов. При нем рассчитывается полная стоимость займа помимо одноразовых комиссий. Вся сумма делится на определенный срок кредитования. Этот способ выгодный тем, что не составляет особых хлопот. Заемщик точно знает и помнит сумму ежемесячного платежа.Каждый месяц заемщик вносит на банковский счет одинаковую сумму в течение всего срока действия договора.

Рассмотрим, как рассчитать платежи на основе аннуитетной схемы.

Пусть К рублей – предоставленный кредит (тело кредита),

 nчисло месяцев  выплаты основного долга,

r %годовая процентная ставка.

Найдем общую сумму платежа (погашение кредита) для нашего случая.

Обозначим эту сумму через Х. Она складывается из ежегодных равных выплат х. Тогда Х = n * x.

Ежегодно остаток долга увеличивается на r % , то есть увеличивается в (1 0,01r ) раз. Пусть  1 0,01r = S.

Через 1 год после получения кредита долг клиента К * Sрублей.

Заемщик выплатил банку x рублей. Его долг  К1 =К * S —x (рублей), который через год опять увеличивается в S  раз.

После второй выплаты сумма долга  К2 = К1* S —x =  (К * S —x)*S x  = К * S *xx=К * – ( 1) * х  (рублей).

После третьей выплаты сумма долга  равна

К3 = К2* S —x =  ( К1 * S —x) * S x  =К1* – ( 1)x(К * S —x)* – ( 1)x =  К* S³–  x* S²  – ( 1)x=  К* S³–  ( S²   1)*x.

Выражение в скобках — сумма трех членов геометрической прогрессии,  первый член которой равен 1, а знаменатель –  S

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Если кредит был выдан на n лет, то  остаток через n лет равен нулю. Кn = 0. Значит, уменьшаемое и вычитаемое равны:

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Полная выплата по кредиту составляет Х = х * n:

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Это равенство позволяет  любую величину выразить через другие.

Дифференцированный (или  регрессивный) способ погашения кредита предусматривает уменьшение ежемесячного взноса. Сначала клиент платит большие взносы по кредиту, а  затем  с каждым разом сумма платежа уменьшается.

Платеж = фиксированная часть проценты.

В данном случае фиксированная часть – погашение тела займа.

Рассмотрим, как рассчитать платежи на основе дифференцированной схемы.

Пусть К – предоставленный кредит (тело кредита),

n –число месяцев  выплаты основного долга,

r % – годовая процентная ставка,

p % — месячная процентная ставка.

Тогда p % = r % :12. 

Найдем общую сумму платежа (погашение кредита) для нашего случая.

Обозначим эту сумму через Х. Она складывается из ежемесячных выплат.

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Это и будет общая сумма платежа (погашение кредита) при дифференцированном (или  регрессивном) способе погашения кредита.

Задачи про вклады.

Задача 1

Марина поместила 600 000 рублей в банк на 4 месяца под 12% годовых с учетом капитализации процентов, то есть по истечении каждого месяца к ее вкладу добавляются деньги, начисленные в качестве процентов. Какая сумма будет на счете Марины через 4 месяца? Ответ округлите до целого количества рублей.

Решение.

Если банк применяет ставку по вкладу с учетом  капитализации процентов, то каждый месяц банк увеличивает сумму на счету вкладчика на  12% :12=1%, то есть увеличивает в 1,01 раз.

Месяц

Вклад (тыс. руб)

1

600*1,01

2

(600*1,01)*1,01

3

(600*1,01*1,01)*1,01

4

(600*1,01*1,01*1,01)*1,01

600*(1,01)3*1,01 = 600*1,04060401 = 624,362406(тыс. руб) = 624 362,406 руб.

Ответ: 624 362 рублей.

Задача 2.

Николай положил в банк 50 000 рублей под 10% годовых. В конце каждого года банк начисляет 10% годовых, то есть увеличивает вклад на 10%. Сколько денег окажется на вкладе через 3 года?

Решение.

 В конце каждого года банк увеличивает вклад на 10%, то есть увеличивает в 1,1 раз.

Читайте также:  Функция БС или как рассчитать в Excel сложный процент?

Год

Вклад (тыс. руб)

1

50*1,1

2

50*1,1*1,1

3

50*1,1*1,1*1,1

50*(1,1)3 = 50*1,331 = 66,55(тыс. руб) = 66 550 руб.

Ответ:  66 550 рублей.

Задача 3

Первый банк предлагает открыть вклад с процентной ставкой 10%, а второй – 11%. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Клиент сделал одинаковые вклады в оба банка. Через два года второй банк уменьшил процентную ставку по вкладу с 11% до Р%. Еще через год клиент закрыл оба вклада и оказалось, что второй банк принес ему больший доход, чем первый. Найдите наименьшее целое Р, при котором это возможно.

Решение.

 В конце каждого года 1 банк увеличивает вклад на 10%, то есть увеличивает в 1,1 раз. Второй банк сначала увеличивал вклад на 11%, то есть увеличивает в 1,11раз, а потом на Р%, то есть увеличивает в (1 Р*0,01) раз. 

Год

Вклад в 1 банке

Доход в 1 банке

Вклад во 2 банке

Доход во 2 банке

1

S*1,1

S*1,11

2

S*1,1*1,1

S*1,11*1,11=S*1,2321

3

S*1,1*1,1*1,1=S*1,331

1,331S – S= = 0,331S

(S*1,2321)(1 Р*0,01)=

= 1,2321S 0,012321РS

1,2321S 0,012321РS -S= = 0,2321S 0,012321РS

 По условию задачи второй банк принес клиенту  больший доход, чем первый. Получаем неравенство:

0,2321S 0,012321РS > 0,331S.

Поделим обе части неравенств на S :

0,2321 0,012321Р > 0,331.

0,012321Р > 0,331 – 0,2321

0,012321Р > 0,0989

Р > 0,0989 : 0,012321

Р > 8,02… . По условию задачи Р- наименьшее целое число, поэтому P = 9.

Ответ: 9%.

Задача 4

1 мая 2005 года Марина положила 10 000 000 рублей в банк сроком на 1 год с ежемесячным начислением процентов и капитализацией под а процентов годовых. Первого числа каждого месяца сумма вклада увеличивается на одно и то же количество процентов. Найдите а, если известно, что через 6 месяцев  сумма вклада Марины составит 10 400 000 рублей, а через  12 месяцев сумма вклада увеличится ровно на а %.

Решение.

В конце года  банк увеличивает вклад на а%, то есть увеличивает его  в (1 0,01а) раз. Через месяц  сумма вклада увеличивается на (а :12)% .

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Ответ: 8,16 %.

Задачи про кредиты.

Задача 1

Клиент взял в банке кредит 60 000 рублей на год под 12% . Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, чтобы через год выплатить  всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в  банк ежемесячно?

Решение.

Аннуитентный способ погашения кредита.

Клиент взял в банке кредит 60 000 рублей на год под 12% , значит,   он за год  должен вернуть  сумму, взятую в кредит вместе с процентами, в количестве 60 000*1,12 = 67 200(руб). Погашая  кредит, клиент вносит в банк ежемесячно одинаковую сумму денег:

67 200 : 12 = 5 600 (руб).

Ответ:  5 600 рублей.

Задача 2

Клиент 15 января 2021 года взял в банке кредит 1 500 000 рублей. План расчета по кредиту: 15 числа каждого следующего месяца банк начисляет 0,5% на оставшуюся сумму долга, затем клиент переводит в банк платеж.  На какое минимальное количество месяцев клиент может взять кредит, чтобы ежемесячные выплаты были не более 300000 рублей?

Решение.

Дифференцированный  способ погашения кредита.

Первый процентный платеж составляет  0,005 от суммы долга: 1,5*0,0075 = 0,0075 (млн. руб) 

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

 Первая выплата была наибольшей. По условию задачи ежемесячные выплаты должны быть не более  300 000 рублей = 0,3 млн рублей. Получаем неравенство:   

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

0,3n – 0,0075n  ≥ 1,5;

0,2925n ≥ 1,5,  

n ≥ 1,5 : 0,2925,

n ≥ 15 000 : 2925, 

n ≥  5,128…

Так как n – целое число, то  минимальное количество месяцев, на которое  клиент может взять кредит, будет 6 месяцев.

Ответ: 6 месяцев.

Задача 3

15 февраля 2021 года Олег взял в банке 2150000 рублей в кредит под 15% годовых. 15 февраля каждого года банк начисляет проценты на оставшуюся сумму долга, затем Олег переводит в банк платеж в х рублей. Какой должна быть сумма х, чтобы Олег выплатил долг двумя равными платежами?

Решение.

Аннуитентный способ погашения кредита.

Олег взял в банке 2 150 000 рублей в кредит под 15% годовых, значит, 15 февраля 2021 года и 15 февраля 2021 года его долг увеличится в 1,15 раз.

Год

Долг (руб)

Платеж (руб)

2021

2 150 000*1,15 = 2 472 500

х

2021

(2 472 500 – х)*1,15 = 2 843 375 — 1,15х

х

В 2021 году суммы долга и платеж равны, получаем уравнение: 2 843 375 – 1,15х = х

2,15х =  2 843 375,  х =2 843 375 : 2,15, х = 1322500. Значит, чтобы Олег выплатил долг двумя равными платежами, сумма платежа должна составлять 1 322 500 рублей.

Читайте также:  Чистая текущая стоимость (NPV)

Ответ: 1 322 500 рублей.

Задача 4

В июле планируется взять в банке  кредит на сумму 36 млн рублей на некоторый срок (целое количество лет). Условия его возврата таковы:

  • в январе долг возрастает на 10 процентов по сравнению с концом предыдущего года;
  • с февраля по июнь надо выплатить часть долга;
  • в июле долг должен быть на одну и ту же сумму меньше долга  на июль прошлого года.

На сколько лет был взят кредит, если общая сумма выплат составила 54 млн рублей.

Решение.

Дифференцированный  способ погашения кредита.

Пусть кредит взят на n лет.  Тогда долг 36 млн. рублей делится на n равных частей, получаем сумму, которую надо  выплачивать ежегодно. Процентный платеж составляет 10% долга, то есть долг увеличивается ежегодно в 1,1 раза.

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Найдем процентные  платежи за n лет:

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Получаем уравнение

1,8(n – 1) = 18.
n – 1 = 10,
n = 11.

Ответ: 11 лет. 

              Задача 5

В июле планируется взять в банке  кредит на сумму 12 млн рублей на  срок 10 лет. Условия его возврата таковы:

  • в январе долг возрастает на а процентов по сравнению с концом предыдущего года;
  • с февраля по июнь надо выплатить часть долга;
  • в июле долг должен быть на одну и ту же величину меньше долга  на июль прошлого года.

Найдите а, если известно, что наибольший годовой платеж составит не более 3,38 млн рублей, а наименьший — на менее 1,464 млн рублей.

Решение.

Кредит взят на 10 лет.  Тогда долг  делится на 10 равных частей, т е 12 : 10=1,2 (млн руб.). Получили сумму, которую надо  выплачивать ежегодно. Процентный платеж составляет а% долга, то есть долг увеличивается в (1 0,01а) раз. а% – это а*0,01=0,01а.

Год

Долг (млн руб) на январь

Выплата долга (млн руб)

Процентный платеж (млн руб)

Ежегодный платеж (млн руб)

1

12*(1 0,01а)

12:10 = 1,2

12*0,01а = 0,12а

1,2 0,12а = 0,12*(10 а)

10

1,2*(1 0,01а)

1,2

0,012а

1,2*(1 0,01а)

Наибольший годовой платеж (первый платеж) составит не более 3,84 млн рублей, а наименьший (последний платеж) — на менее 1, 464 млн рублей.

Получаем систему неравенств:

Аннуитет. Определяем процентную ставку в EXCEL. Примеры и описание

Решим каждое неравенство :

0,12*(10 а) ≤ 3,84                 1,2*(1 0,01а) ≥ 1,464

1,2 0,12а  ≤ 3,84                   1,2 0,012а ≥ 1,464

0,12а ≤ 3,84 — 1,2                   0,012а ≥ 1,464 -1,2

0,12а ≤ 2,64                              0,012а ≥ 0,264

а ≤ 2,64 : 0,12                           а ≥ 0,264 : 0,012

а ≤ 264 : 12                               а ≥ 264 : 12

а ≤ 22.                                       а ≥ 22.

Имеем     22  ≤  а  ≤  22 .

Значит, а = 22.  Кредит взят под 22% годовых.

Ответ: 22%.

Литература.

Математика. ЕГЭ. Алгебра: задания с развернутым ответом: учебно – методическое пособие/ Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова. – Ростов-на-Дону: Легион, 2021.

Решу егэ

Решение.

1) Табличный вариант решения:

Годы хранения
вклада
Динамика роста (падения) суммы вкладов
СашаПаша
04.12.1450 00050 000
К 04.12.1550 000 · 1,1 = 55 00050 000 · 1,1 = 55 000
04.12.1555 000 · 0,9 = 49 50055 000 · 0,8 = 44 000
К 04.12.1649 500 · 1,1 = 54 45044 000 · 1,1 = 48 400
04.12.1654 450 − 20 000 = 34 45048 400 − 15 000 = 33 400
К 04.12.1734450 · 1,1=3789533400 · 1,1=36740
Ответ на главный вопрос задачи37 895 – 36 740 = 1 155

2) Вариант решения с помощью выражения:

Delta = левая круглая скобка 50000 умножить на 1,1 умножить на 0,9 умножить на 1,1 минус 20000 правая круглая скобка 1,1 минус левая круглая скобка 50000 умножить на 1,1 умножить на 0,8 умножить на 1,1 минус 15000 правая круглая скобка умножить на 1,1=

=1,1 умножить на (50000 умножить на 1,21 умножить на 0,9 минус 20000 минус 50000 умножить на 1,21 умножить на 0,8 плюс 15000)==1,1 умножить на (50000 умножить на 1,21 умножить на 0,9 минус 50000 умножить на 1,21 умножить на 0,8 минус 5000)=1,1 умножить на (50000 умножить на 1,21 умножить на (0,9 минус 0,8) минус 5000)==1,1 умножить на (5000 умножить на 1,21 минус 5000)=1,1 умножить на 5000 умножить на (1,21 минус 1)=11 умножить на 500 умножить на 0,21=105 умножить на 11=1155.

3) Если бы ни Саша, ни Паша не снимали со счетов… их вклады выросли бы за 3 года до 50000 · 1,331 = 1331 · 100 : 2 = 133100 : 2 = 66550 (р).

Что помешало Саше?

50000 · 1,1 · 0,1 = 5000 · 1,1 = 5500 р., что он снял со счета 04.12.15 привело к уменьшению ожидаемой суммы, включая процентные начисления в течение 2 лет! А этот поступок Саши исчисляется суммой 5500 · 1,21 = 5500 · 121 = 1331 · 5 = 13310 : 2 = 6655 (р).

Те 20 000 р., которые он снял 04.12.16, привело к уменьшению ожидаемой суммы на 20 000 · 1,1 = 22 000 (р.). Итого: 28 655 р.

В конечном итоге ему причиталось 66 550 − 28 655=37895 (р.)

Что помешало Паше?

50 000 · 1,1 · 0,2 = 10 000 · 1,1 = 11000 р., что он снял со счета 04.12.15, привело к уменьшению ожидаемой суммы, включая процентные начисления в течение 2 лет! А это исчисляется суммой 11 000 · 1,21 = 1,1 · 1,21 · 10 000 = 1,331 · 10 000 = 13 310 (р).

15 000 р., которые он снял в конце 04.12.16, привело к уменьшению ожидаемой суммы на 15000 умножить на 1,1=16500(р.). Итого: 29 810 р.

В окончательный расчет на руки Паше выдали: 66 550 − 29 810 = 36 740 (р.)

Саша получил на 1 155 р. больше, чем Паша (37895 − 36740).

Ответ: у Саши, на 1155 рублей.

Ответ: у Саши, на 1155 рублей.

Источник: А. Ларин: Тренировочный вариант № 115.

Оцените статью
Adblock
detector