Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание Удобные вклады

А что если первоначальная сумма не нулевая

Если у вас стоит немного другая задача — сколько нужно пополнять текущий вклад, если сумма вклада равна 100 тыс. и требуется накопить 1.5 млн. рублей за 10 лет при ставке 10% годовых. В таком случае, нашу исходную формулу нужно немного модифицировать, добавив в нее часть, связанную с первоначальным взносом

В этой формуле А — первоначальная сумма вклада, а вторая часть слагаемого — это формула сложных процентов(процент с капитализацией)

Уже из этой форумлы нужно выразить PMT — ежемесячный взнос. Но это уже дело математики вам нужно постараться самому(ой). Если не получится, пишите в комментариях, я ее приведу.

Данные формулы являются универсальными и подходят для расчета возможного срока депозита(когда вы знаете, сколько будете пополнять и какую сумму хотите достигнуть) В данном случае вам будет интересен срок, нужно просто выразить переменную n.

Что такое простой и сложный проценти чем они отличаются

Понятие простых и сложных процентов — один из самых важных уроков по финансовой грамотности, которые вы должны знать. Они встречаются в нашей жизни повсюду: от ежедневных покупок (кэшбек, бонусы) до инвестирования (проценты на депозит, дивиденды, комиссии и т.д.) и оказывают незаметное, но существенное влияние на ваш кошелек на длинной дистанции. Чтобы наглядно увидеть различия между простыми и сложными процентами, давайте рассмотрим примеры.

Простой процент — прибыль в % начисляется только на первоначальную сумму вклада и сразу выводится.

Допустим, вы открыли депозит 10000$ под 10% годовых, проценты начисляются раз в год. По схеме простого процента каждые 12 месяцев вы будете получать 1000$ прибыли, но она не остаётся на депозите и сразу же выводится. В итоге прирост прибыли будет выглядеть так:

Всё «просто» — каждый год плюс тысяча в карман. Простой процент используется в случаях, когда база начисления процентов не изменяется. Это могут быть специальные банковские депозиты, проценты по кредиту. Также простой процент используется, когда инвестор регулярно выводит прибыль — в каждый период времени работает первоначальная сумма.

Сложный процент — проценты начисляются на первоначальную сумму вклада плюс всю полученную до этого прибыль. Понятия «реинвестирование» и «капитализация» по сути означают использование сложного процента.

Для сравнения пусть будет тот же депозит 10000$ под 10%, но банк в этот раз разрешает оставить прибыль на счёте. Вот что произойдёт с вкладом за 10 лет:

В первый год разницы нет — всё та же тысяча, но поскольку сумма на депозите теперь растёт, уже на втором году прибыль увеличивается: 2100$ вместо 2000$, за третий год 3310$ вместо 3000$ и так далее. За 10 лет доходность нашего депозита составила 159% вместо 100% когда мы выводили прибыль. Неплохая прибавка, не так ли? А вот что случится еще через несколько десятилетий:

Впечатляет! Чем дольше открыт депозит, тем сильнее работает эффект сложного процента — за 50 лет можно увеличить депозит не в 6, а более чем в 100 раз. Вот как это выглядит на графике:

без капитализации депозит растёт линейно, а с капитализацией — по экспоненте

Теперь киношные истории про забытые банковские счета, на которых накопились миллионы долларов выглядят вполне реальными 🙂 Конечно, 50 лет это много, но правило сложного процента неплохо работает и на более коротких промежутках времени — всё зависит от доходности вклада.

Думаю, суть понятна, теперь давайте пройдемся по математической стороне вопроса, а потом рассмотрим несколько типичных примеров задач.

Выбор формата представления для процентных ставок

Особое внимание следует уделить числовому форматированию ячеек. В частности, ячейки с процентными ставками и ячейки, в которых задаются шаг изменения и начальное значение процентной ставки, отформатируйте как процентные. Насколько это важно, вы поймете из приведенного ниже примера.

Бухгалтер одного из предприятий при расчете начислений в один из обязательных фондов перепутал ставку 0,06% со ставкой 0,06 и в течение года перевыполнил план по данному сбору на 99 лет вперед. А по налогу на прибыль заработал пеню.

Для того чтобы выбрать формат для ячеек с процентными ставками, выполните следующие действия:

  • Выделите форматируемую область, нажмите правую кнопку мыши и выберите в контекстном меню команду Формат ячеек.
  • В диалоговом окне Формат ячеек перейдите на вкладку Число. В списке Числовые форматы выделите элемент Процентный (рис. 3.16), задайте необходимое число десятичных знаков (например, 2) и нажмите кнопку ОК.

Источник

Задача1

Требуется накопить за 5 лет сумму 1 000 000 руб. Начальная сумма вклада =0. Определить величину регулярных пополнений вклада, если процентная ставка составляет 10% годовых, пополнение вклада производится ежеквартально, капитализация процентов также производится ежеквартально. См. файл примера .

Расчет суммы регулярного пополнения вклада, произведем сначала с помощью финансовой функции MS EXCEL ПЛТ() .

Эта функция имеет такой синтаксис: ПЛТ(ставка; кпер; пс; [бс]; [тип]) PMT(rate, nper, pv, [fv], [type]) – английский вариант.

Примечание . Функция ПЛТ() входит в надстройку «Пакет анализа». Если данная функция недоступна или возвращает ошибку #ИМЯ?, то включите или установите и загрузите эту надстройку (в MS EXCEL 2007/2022 надстройка «Пакет анализа» включена по умолчанию).

Примечание . Обзор всех функций аннуитета найдете здесь .

Первый аргумент – Ставка. Это процентная ставка именно за период, т.е. в нашем случае за квартал, т.е. 10%/4 (в году 4 квартала). Кпер – общее число периодов платежей по аннуитету, т.е. 20 (4 кв. в году*5 лет) Пс — Приведенная стоимость , т.е. стоимость приведенная к текущему моменту.

Читайте также:  Расчет параметров кредитов (процент, выплаты, сроки, сумма) в EXCEL. Примеры и описание

В нашем случае, это начальная сумма на расчетном счету, т.е. 0. Бс — Будущая стоимость вклада в конце срока (по истечении числа периодов Кпер). Бс — требуемое значение остатка средств после последнего взноса. В нашем случае Бс = 1 000 000. Тип — число 0 или 1, обозначающее, когда должно производиться начисление %. 0 – в конце периода, 1 – в начале. Если этот параметр опущен, то он считается =0 (наш случай).

Примечание . Если проценты начисляются в конце периода (каждого квартала), то тогда же производится пополнение вклада (т.к. указан аргумент ТИП=0 или опущен). Т.е., в последний день первого квартала мы пополнили счет на величину регулярного взноса, процент по вкладу за первый квартал =0.

Если проценты начисляются в начале периода (каждого квартала), то тогда же производится пополнение вклада (аргумент ТИП=1). Т.е., в первый день первого квартала мы пополнили счет на величину регулярного взноса, но так как процент по вкладу начисляется также в первый день, то за первый квартал будет начислено 0.

Решение1 Итак, ежеквартальный платеж может быть вычислен по формуле =ПЛТ(10%/4; 5*4; 0;1000000; 0), т.е. -39147,13р. Знак минус показывает, что мы имеем разнонаправленные денежные потоки: накапливаем деньги (тем самым отнимаем их из нашего бюджета), и получаем от банка 1000000, когда забираем деньги в конце срока.

Если период начисления процентов и регулярных взносов не совпадает

Если проценты начисляются, например, ежегодно, а взносы делаются ежемесячно, то такой денежный поток не является аннуитетом. Следовательно, функцию ПЛТ() и другие функции для расчета параметров аннуитета применять нельзя.

Таблица пополнения вклада

Составим таблицу пополнения вклада.

Вклад пополняется из 2-х источников: первый – это регулярные взносы, второй – начисленные за период проценты (на накопленную к данному моменту сумму вклада). Для вычисления регулярно начисляемых процентов используется функция ПРПЛТ (ставка; период; кпер; пс; [бс]; [тип])

Таким образом, вклад регулярно пополняется на величину =-ПЛТ(10%/4; 20; 0;1000000; 0) ПРПЛТ(10%/4; период; 20; 0; 1000000; 0) , где период – это номер периода, в который требуется подсчитать величину пополнения. Тот же самый результат дает формула =-ОСПЛТ(10%/4; период; 20; 0; 1000000; 0)

Соотношение величины взноса и начисленных процентов хорошо демонстрирует график, приведенный в файле примера .

Примечание . В статье Аннуитет. Расчет периодического платежа в MS EXCEL. Погашение ссуды (кредита, займа) показано как рассчитать величину регулярной суммы для погашения кредита или ссуды в случае применения аннуитетной схемы.

Как использовать сложные проценты в инвестировании

Как вы уже знаете, получаемая от инвестиций прибыль — это важный инструмент, который на большой дистанции может во много раз увеличить доходность ваших вложений. Метод повторного вложения прибыли называется реинвестированием.

Безусловно, использовать эффект сложного процента должен каждый инвестор, однако на практике это не так просто как кажется. Существует несколько проблем, которые мешают теоретически супервыгодное реинвестирование реализовать в реальных условиях. Например, вряд ли вы слышали о людях, ставших миллиардерами через банковские депозиты.

Дело в том, что деньги постоянно обесцениваются из-за инфляции — постоянного повышения цен на товары и услуги. На самом деле ставка банковских депозитов обычно примерно равна инфляции или даже ниже, поэтому реальная доходность вкладов не впечатляет:

Даже если оставить удачный бескризисный отрезок 2022-2020 годов, доходность банковского вклада с учётом инфляции была в районе 1-2% годовых в рублях. Не говоря уже о доходности в долларах, которая после 2022 года, очевидно, находится в еще большем минусе.

Кроме инфляции сильно повлиять на итоговую доходность инвестиций могут разнообразные комиссии. Если их размер зависит от суммы инвестиций, убытки накапливаются по правилу сложных процентов, но уже с негативным эффектом. Это значит, что за несколько десятков лет инвестор может потерять сотни или даже тысячи процентов прибыли.

Такое часто встречается при инвестициях в ETF, где комиссия за управление достигает несколько процентов от депозита в год. Один из самых старых ETF под тикером SPY (инвестиционная стратегия — следование за индексом S&P 500) работает с 1993 года и берет с клиентов 0.

09% в год — немного, по сравнению с другими биржевыми фондами. Эта ставка со временем может меняться, но давайте для эксперимента представим что она всегда была такой — и сравним, как будет отличаться доходность инвестиций при комиссиях от 0 до 2% в год:

Как видите, даже из-за несчастных 0.09% инвестор на дистанции 27 лет потерял 25% прибыли. А вроде бы небольшая комиссия в 2% годовых срезает доходность почти в 3 раза — с 723% до 270%, и это еще не учтена инфляция. По причине скрытых комиссий высокая доходность активов на самом деле может оказаться в разы ниже, поэтому перед принятием решения об инвестировании важно учитывать даже мизерные расходы.

Куда же стоит инвестировать, чтобы использовать эффект сложного процента на максимум и минимизировать влияние инфляции и комиссий? Я бы выделил такие инструменты:

Конечно, в любых инвестициях можно использовать правило сложных процентов, но не везде это рекомендуется делать. Чем выше риски вложений, тем выгоднее просто выводить прибыль, поскольку при неудачных раскладах депозит может быть потерян.

Как посчитать проценты на депозит в excel для выбора вклада

Пример 3. Два банка предлагают сделать депозитный вклад на одинаковую сумму (250000 рублей) на 1 год при следующих условиях:

  1. Номинальная ставка – 24%, простые проценты, 12 периодов капитализации.
  2. Номинальная ставка 22%, сложные проценты, начисляемые по итогам каждого периода, 4 периода капитализации.

Определить выгодный вариант, отобразить схему выплат.

В первом случае таблица выплат выглядит так:

Проценты – постоянная величина, рассчитываемая по формуле:

Описание аргументов (для создания абсолютной ссылки используйте клавишу F4):

  • $B$2 – начальная сумма вклада;
  • $B$3 – годовая ставка;
  • $B$4 – число периодов капитализации вклада.
Читайте также:  Как начать сберегать деньги для инвестиций: лайфхаки 20.04.2021 | Банки.ру

Сумма накопленных средств за каждый период рассчитывается как как сумма средств на счету за прошедший период и процентов, начисленных за текущий период. В итоге первый банк начислит 60000 рублей процентов, и вкладчик сможет забрать 310000 рублей.

Таблица начисления процентов по условиям второго банка:

В данном случае проценты не являются фиксированной величиной и зависят от итоговой суммы накоплений за предыдущий период (поэтому ссылка на ячейку L2 – абсолютная):

При расчете суммы за каждый период к текущему значению необходимо прибавить проценты за предыдущий период.

Для быстрого расчета итоговой суммы используем формулы:

  1. Первый банк: банк 1.
  2. Второй банк: банк 2.

Несмотря на то, что второй банк предлагает расчет с использованием сложных процентов, предложение первого банка оказалось выгоднее. Если бы число периодов капитализации совпадало (12), во втором банке вкладчик получил бы 310899,1 рублей, то есть больше денег, несмотря на более низкую номинальную процентную ставку.

Особенности использования функции эффект в excel

Функция имеет следующий синтаксис:

  • номинальная_ставка – обязательный аргумент, характеризующий числовое (десятичная дробь) или процентное значение номинальной годовой ставки;
  • кол_пер – обязательный аргумент, характеризующий числовое значения числа периодов за год, на протяжении которых начисляются сложные проценты.
  1. Аргумент кол_пер может принимать дробные числа, значения которых будут усечены до целого числа (в отличие от операции округления, при усечении отбрасывается дробная часть).
  2. Каждый из двух аргументов функции ЭФФЕКТ должен быть представлен числовым (или процентным для аргумента номинальная_ставка) значением либо текстовой строкой, которая может быть преобразована в число. При вводе не преобразуемых к числовым значениям текстовых строк и имен, а также данных логического типа функция ЭФФЕКТ будет возвращать код ошибки #ЗНАЧ!.
  3. Аргумент номинальная_ставка принимает значения из диапазона положительных чисел, а кол_пер – из диапазона от 1 до ∞. Если данные условия не выполняются, например, функции =ЭФФЕКТ(0;12) или =ЭФФЕКТ(12%;0) вернут код ошибки #ЧИСЛО!.
  4. Функция ЭФФЕКТ использует для расчетов формулу, которая может быть записана в Excel в виде: =СТЕПЕНЬ(1 (A1/A2);A2)-1, где:
  • A1 – номинальная годовая ставка;
  • A2 – число периодов, в которые происходит начисление сложных процентов.
  • Для понимания термина «сложные проценты» рассмотрим пример. Владелец капитала предоставляет денежные средства в долг и планирует получить прибыль, величина которой зависит от следующих факторов: сумма средств, которая предоставляется в долг; длительность периода кредитования (использования предоставленных средств); начисляемые проценты за использование.
  • Проценты могут начисляться различными способами: базовая сумма остается неизменной (простые проценты) и база изменяется при наступлении каждого последующего периода выплат (сложные). При использовании сложных процентов сумма задолженности (прибыли) увеличивается быстрее при одинаковых сумме и периоде кредитования, в сравнении с применением простых процентов (особенно, если периодов начисления процентов (капитализации) достаточно много.
  • Для получения результата в формате процентов необходимо установить соответствующий формат данных в ячейке, в которой будет введена функция ЭФФЕКТ.

Источник

Правильный калькулятор вклада с капитализацией

напечатать

10 авг. 2022

Оценить доходность вклада с капитализацией возможно
несколькими способами. Наиболее простой и достаточно точный вариант –
использование калькулятора. Программа экономит массу времени и предоставляет развернутые
сведения по начислению процентов.

Депозитный калькулятор –
удобный сервис для определения доходности вклада. Программа позволяет за несколько минут максимально точно рассчитать потенциальную прибыль по
депозитам в разных банках и выбрать наиболее выгодный вариант.

Преимущества использования
калькулятора для оценки прибыльности вклада:

  1. Высокая точность
    расчетов. В основу калькуляторов доходности заложены формулы финансовой
    математики, которые используют банкиры при начислении процентов по депозитам.
  2. Определение разницы доходов
    при изменении параметров депозита: срочности, ставки, порядка начисления
    процентов и пополнения вклада.
  3. Получение четкого представления
    о размере получаемого дохода по окончании срока вклада.
  4. Сопоставление условий по
    депозитным программам нескольких финансовых организаций.

Важно! Информация,
полученная в ходе расчетов депозитным калькулятором, всё же носит справочный
характер. За достоверными данными о размере будущих накоплений рекомендуется
обратиться в банк. Некоторые учреждения готовы в индивидуальном порядке сделать
надбавку к проценту для постоянных клиентов или для вкладчиков, открывающих депозит
на длительный срок.

Для определения прибыли по
вкладу необходимо открыть программу депозитный калькулятор-онлайн с опцией расчета
капитализированных процентов.

Общий алгоритм вычисления:

1. В форму ввести основные
параметры вклада:

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

2. Определить порядок
начисления процентов, т.е. периодичность капитализации, и возможность внесения средств на счет вклада.

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

3. Нажать кнопку «Рассчитать»
и оценить результат.

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

Вывод: если
вкладчик разместит на депозитный счет в банке 50 000 р. с капитализацией под
13% годовых, то его доход за полгода составит 3360 р.

Для наглядности в большинстве
вычислительных программ предусмотрен вывод результатов в виде графика с отображением
ежемесячного начисления процентов.

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описаниеВажно! Доходы по ставке более 15,5% подлежат налогообложению в размере 35%. В некоторых программах предусмотрена опция расчета суммы, которая облагается
налогом, и размера удержанной прибыли с депозита.

При размещении вклада с
капитализацией на 6 месяцев в размере 50 000 р., но по ставке 17%, доход
составит 4290 р., 136 р. – сумма удержанных налогов.

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

Узнать итоговую сумму
прибыли по депозиту с капитализацией получится с помощью табличного редактора MS Excel.

Пример расчета депозита на 50 000
р. со сроком 6 мес. по ставке 13%. Нужно:

  1. Открыть программу Excel и активировать любую ячейку.
  2. Перейти в закладки «Формулы»/«Финансовые».
  3. Из списка выбрать формулу
    «БС» – будущая стоимость.

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

4. В открывшейся форме
ввести данные депозита:

  • Ставка –
    отображается в виде десятичной дроби из расчета на 1 месяц, то есть – 0,13/12;
  • КПер – количество
    месяцев (периодов капитализации) – 6;
  • Пс – сумма депозита: 50 000.

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

Редактор автоматически
отображает общую сумму инвестиций на конец периода: вклад начисленные
проценты.

Из расчета видно, что
вкладчик за полгода получит прибыть с депозита в размере 3339 р. Погрешность
результата по сравнению с вычислением калькулятором-онлайн составляет 21 р. –
то есть менее 1%.

Недостаток использования
табличного редактора – программа не рассчитывает налог на доход от вклада, ставка
по которому превышает 15,5%.

Читайте также:  Чистая текущая стоимость (NPV)

Депозит с капитализацией
предусматривает начисление процентов на размер самого вклада и на прибыль, насчитанную ранее. Формула вычисления зависит от типа капитализации:

  • ежемесячная;
  • ежедневная;
  • ежеквартальная;
  • ежегодная.

Наиболее распространен первый вариант – начисление сложных процентов ежемесячно. В этом случае
применяется формула:

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

,

где:

  • Сумма вклада – размер сбережений,
    размещенных на депозитном счете;
  • Период – количество дней в
    расчетном периоде;
  • Ставка – годовой процент;
  • n – количество периодов капитализации за весь
    срок вклада.

Самостоятельно рассчитать депозит по финансовой
формуле достаточно сложно. Проще определить прибыльность инвестиций как сумму
начисленных процентов за отдельные периоды. Ежемесячный доход вычисляется по
формуле простых процентов, а затем приплюсовывается к телу вклада.

Пример расчета. Параметры депозита: 

Алгоритм вычислений:

  1. Доход за первый месяц = 50000*30*13/(100*365)=534,24
    р.
  2. Доход за второй месяц = (50000 534,24)*29*13/(100*365)=521,95
    р.
  3. Доход за третий месяц = (50534,24 521,95)*30*13/(100*365)=545,53
    р.
  4. Доход за четвертый месяц = (51056,19 545,53)*28*13/(100*365)=551,36
    р.
  5. Доход за пятый месяц = (51601,72 551,36)*30*13/(100*365)=557,25
    р.
  6. Доход за шестой месяц = (52153,08 557,25)*28*13/(100*365)=525,66
    р.
  7. Общая сумма начисленных процентов =
    534,24 521,95 545,53 551,36 557,25 525,66=3235,99 р.

Погрешность вычисления в данном случае выше
из-за неточного количества дней. Калькулятор обычно учитывает конкретную дату
открытия вклада, которая является отправной точкой для последующего расчета.

Скрупулезный анализ
параметров депозитов поможет выбрать оптимальный банковский продукт. Программа
сравнения доходности вкладов представлена на многих сайтах финансовых организаций.
Как правило, данный сервис расположен на странице «Физическим лицам»/ «Вклады/Депозиты»/
«Калькулятор вклада».

На сайте получится сравнить
размер ожидаемой прибыли при размещении одинаковой суммы вклада на один и тот же срок, но на условиях разных депозитных программ, действующих именно в данном
банке.

Сопоставление доходности
вкладов Байкал Банка. Нужно:

  1. Открыть Калькулятор
    вкладов.
  2. Задать интересующие вас параметры. Например, 100 тыс. р. на срок до 400 дней включительно. Основное условие –
    ежемесячная капитализация процентов. 
  3. Нажать «Рассчитать доход».

Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

4. Оценить результат.

На экран будет выведен
перечень депозитных программ, подходящих под введенные условия. Остается
выбрать оптимальный среди предложенных вариантов.

На размер доходности вклада
оказывают влияние следующие критерии:

Наиболее точный результат
покажет калькулятор на сайте того банка, куда вы кладете депозит. Высока
вероятность, что при оформлении договора сотрудники используют этот же инструмент. Вам останется правильно ввести параметры, выбрать способ начисления
процентов и учесть удержание налога.

Если вкладчик еще не
определился с банком, то возможно воспользоваться одной из программ: Сложные проценты в EXCEL. Постоянная ставка. Примеры и описание

1. Калькулятор вклада инфопортала о банках. Сервис имеет несколько плюсов:

  • точность
    расчета;
  • учет
    налогообложения;
  • выбор
    периодичности капитализации;
  • вывод графика
    начисления процентов;
  • показ подходящих
    предложений разных банков.

2. Сервис финансовых калькуляторов. В программе можно предусмотреть возможность частичного снятия,
пополнения или досрочного закрытия вклада.

3. Депозитные калькуляторы банка Россия.

4. Калькулятор вклада АК Барс Банка.

5. Инвестиционный калькулятор Бизнес журнала с отображением динамики роста начисляемых процентов. 

Примеры решения задач по сложным процентам

В этом разделе мы пройдемся по некоторым типичным задачам на сложные проценты. Также вы найдете шаблоны расчётов в Excel, в которых можно поменять вводные данные и получить нужное вам решение.

Задача №1. Рассчитать прибыль по вкладу на 5 лет под 10% годовых, начальная сумма вложений 100000 рублей (с капитализацией).

Находим конечную сумму вклада по формуле сложных процентов:

Результат: инвестор через 5 лет получит 61051 рублей прибыли.

Задача №2. Рассчитать прибыль по вкладу на 10 лет под 10% годовых с капитализацией. Начальная сумма вложений 50000 рублей, дополнительно каждый год начиная с первого счёт пополняется на 10000 рублей.

Сначала находим конечную сумму по формуле сложного процента с регулярными пополнениями:

Учитывая, сколько инвестировано за 10 лет (50000 сразу и еще 9 раз по 10000), вычисляем прибыль:

Результат: инвестор через 10 лет получит 139061 рубль прибыли, инвестировав 140000 рублей.

Задача №3. Рассчитать, сколько времени понадобится инвестору, чтобы увеличить капитал с 500000 до 1000000 рублей. Средняя доходность портфеля — 12% годовых, прибыль реинвестируется.

У нас есть все необходимые данные, используем одну из производных формул сложных процентов:

Решение: инвестору понадобится чуть больше 6 лет.

Задача №4. Посчитать среднюю процентную ставку, которая позволит превратить 100000 рублей в 500000 рублей за 10 лет путём инвестирования. Прибыль реинвестируется.

Используем одну из производных формул сложных процентов:

Решение: инвестору нужно вложить деньги под 17.5% годовых (довольно сложно на практике, кстати).

Думаю, этого достаточно. Если ваша задача не похожа ни на одну из предыдущих, возможно вам поможет информация из следующего раздела статьи.

Формула расчета процентов. базовые понятия

Проценты (латин. pro centum) — являются неотъемлемой частью финансовой математики и используются в банковском секторе, финансах, бухгалтерии, страховании, налогообложении и т.д. Так в виде процентов выражают доходность и прибыльность предприятия, ставку по банковским кредитам и займам, налоговые ставки и т.д.

  • Капитал (англ.Capital,Principal) — является базой относительно которого вычисляют процент.
  • Частота начисления процентов — период выплат процентов на капитал.
  • Процентная ставка (англ.Rate) — размер процента или доля капитала, который будет выплачен.
  • Период вложения (англ.Period) — временной интервал передачи капитала банку или другому финансовому институту.

Итак, рассмотрим различные эконометрические задачи с процентами.

Формула расчета сложных процентов с пополнением

В нашем случае имеем следующие данные

Условия по вкладу
Планируемая сумма FV1 млн. 500 тыс
Ставка i10%
Срок n10 лет, начисление ежегодно
Капитализация процентовДа

Мы можем выразить из формулы нужный нам ежегодный взнос
formula5

Подставив в эту формулу наши значения получим

formula6

94118,09232 — именно эту сумму мы должны вкладывать каждый год, чтобы получить через 10 лет 1.5 млн. рублей.

Но на самом деле этот расчет приблизительный. Точный расчет можно получить с помощью калькулятора вкладов

results deposit

Выше приведен расчет депозита на 10 лет с 2 июля 2009. Ежегодное пополнение 94118,09232 Сумма получилась примерно такой(разница 35 рублей не существенна)

Оцените статью
Adblock
detector