Вклад процент excel – Проценты по вкладам

Вклад процент excel - Проценты по вкладам Вклады Возрождение
Содержание
  1. А что если первоначальная сумма не нулевая
  2. Что такое простой и сложный проценти чем они отличаются
  3. History 3 февраля 2022 г.
  4. Вклады с ежедневной капитализацией
  5. Ежегодная капитализация
  6. Ежеквартальная капитализация
  7. Ежемесячная капитализация
  8. Задача1
  9. Зачем нужно считать накопления?
  10. Как использовать сложные проценты в инвестировании
  11. Калькулятор вклада с капитализацией, пополнением и частичным снятием, пролонгацией
  12. Непрерывное начисление процентов в ms excel
  13. Ограничения и область применимости формул
  14. Определяем сумму начисленных процентов
  15. Примеры решения задач по сложным процентам
  16. Простые проценты в ms excel
  17. Сложный процент: как использовать секрет миллиардеров? формулы расчёта, калькулятор в excel
  18. Формула простого процента
  19. Формула расчета сложных процентов с пополнением
  20. Формула сложного процента
  21. Формулы простых и сложных процентов

А что если первоначальная сумма не нулевая

Если у вас стоит немного другая задача — сколько нужно пополнять текущий вклад, если сумма вклада равна 100 тыс. и требуется накопить 1.5 млн. рублей за 10 лет при ставке 10% годовых. В таком случае, нашу исходную формулу нужно немного модифицировать, добавив в нее часть, связанную с первоначальным взносом

В этой формуле А — первоначальная сумма вклада, а вторая часть слагаемого — это формула сложных процентов(процент с капитализацией)

Уже из этой форумлы нужно выразить PMT — ежемесячный взнос. Но это уже дело математики вам нужно постараться самому(ой). Если не получится, пишите в комментариях, я ее приведу.

Данные формулы являются универсальными и подходят для расчета возможного срока депозита(когда вы знаете, сколько будете пополнять и какую сумму хотите достигнуть) В данном случае вам будет интересен срок, нужно просто выразить переменную n.

Что такое простой и сложный проценти чем они отличаются

Понятие простых и сложных процентов — один из самых важных уроков по финансовой грамотности, которые вы должны знать. Они встречаются в нашей жизни повсюду: от ежедневных покупок (кэшбек, бонусы) до инвестирования (проценты на депозит, дивиденды, комиссии и т.д.) и оказывают незаметное, но существенное влияние на ваш кошелек на длинной дистанции. Чтобы наглядно увидеть различия между простыми и сложными процентами, давайте рассмотрим примеры.

Простой процент — прибыль в % начисляется только на первоначальную сумму вклада и сразу выводится.

Допустим, вы открыли депозит 10000$ под 10% годовых, проценты начисляются раз в год. По схеме простого процента каждые 12 месяцев вы будете получать 1000$ прибыли, но она не остаётся на депозите и сразу же выводится. В итоге прирост прибыли будет выглядеть так:

Всё «просто» — каждый год плюс тысяча в карман. Простой процент используется в случаях, когда база начисления процентов не изменяется. Это могут быть специальные банковские депозиты, проценты по кредиту. Также простой процент используется, когда инвестор регулярно выводит прибыль — в каждый период времени работает первоначальная сумма.

Сложный процент — проценты начисляются на первоначальную сумму вклада плюс всю полученную до этого прибыль. Понятия «реинвестирование» и «капитализация» по сути означают использование сложного процента.

Для сравнения пусть будет тот же депозит 10000$ под 10%, но банк в этот раз разрешает оставить прибыль на счёте. Вот что произойдёт с вкладом за 10 лет:

В первый год разницы нет — всё та же тысяча, но поскольку сумма на депозите теперь растёт, уже на втором году прибыль увеличивается: 2100$ вместо 2000$, за третий год 3310$ вместо 3000$ и так далее. За 10 лет доходность нашего депозита составила 159% вместо 100% когда мы выводили прибыль. Неплохая прибавка, не так ли? А вот что случится еще через несколько десятилетий:

Впечатляет! Чем дольше открыт депозит, тем сильнее работает эффект сложного процента — за 50 лет можно увеличить депозит не в 6, а более чем в 100 раз. Вот как это выглядит на графике:

без капитализации депозит растёт линейно, а с капитализацией — по экспоненте

Теперь киношные истории про забытые банковские счета, на которых накопились миллионы долларов выглядят вполне реальными 🙂 Конечно, 50 лет это много, но правило сложного процента неплохо работает и на более коротких промежутках времени — всё зависит от доходности вклада.

Думаю, суть понятна, теперь давайте пройдемся по математической стороне вопроса, а потом рассмотрим несколько типичных примеров задач.

History 3 февраля 2022 г.

Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.

Немного теории

Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по простым и сложным процентам.

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования простых процентов изменяется в каждом периоде начисления.

В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.

Читайте также:  Расчет аннуитетных платежей по кредиту в Excel: скачать кредитный калькулятор

Вклады с ежедневной капитализацией

Д = В х (1 П/365)^Т, где

Д – доход по вкладу;

Ежегодная капитализация

Д = В х (1 П)^Т, где

В – сумма вклада;

Т – срок вклада в годах.

годбез капитализациис капитализацией
Деньги во вкладеНачисленные
проценты
Деньги во вкладеНачисленные
проценты
1100 00010 000100 00010 000
2100 00010 000110 00011 000
3100 00010 000121 00012 100
4100 00010 000133 10013 310
5100 00010 000146 41014 641
ИТОГО50 00061 051

При этом, за пять лет разница между двумя вкладами составила более 11 000 рублей.

Кроме рассмотренных выше периодов начислений капитализации банки могут предлагать и другие, например, раз в полгода, раз в 10, 20, 100, 200, 400 дней. Здесь условия ограничиваются лишь фантазией банковских работников, отвечающих за депозитные программы.

Ежеквартальная капитализация

Д = В х (1 П/4)^Т, где

Д – доход по вкладу;В – сумма вклада;

Т – срок вклада в кварталах.

кварталбез капитализациис капитализацией
Деньги во вкладеНачисленные
проценты
Деньги во вкладеНачисленные
проценты
1100 000,002 500,00100 000,002 500,00
2100 000,002 500,00102 500,002 562,50
3100 000,002 500,00105 062,502 626,56
4100 000,002 500,00107 689,062 692,23
5100 000,002 500,00110 381,292 759,53
ИТОГО12 500,0013 140,82

Как мы видим, разница между вкладом с капитализацией и без нее составила уже более одной тысячи рублей.

Ежемесячная капитализация

Д = В х (1 П/12)^Т, где

В – сумма вклада;

Т – срок вклада в месяцах.

месяцбез капитализациис капитализацией
Деньги во вкладеНачисленные
проценты
Деньги во вкладеНачисленные
проценты
1100 000,00833,33100 000,00833,33
2100 000,00833,33100 833,33840,28
3100 000,00833,33101 673,61847,28
4100 000,00833,33102 520,89854,34
5100 000,00833,33103 375,23861,46
ИТОГО4 166,654 236,69

Как видим, в данном случае разница составила уже достаточно ощутимую сумму.

Задача1

Требуется накопить за 5 лет сумму 1 000 000 руб. Начальная сумма вклада =0. Определить величину регулярных пополнений вклада, если процентная ставка составляет 10% годовых, пополнение вклада производится ежеквартально, капитализация процентов также производится ежеквартально. См.

файл примера

.

Расчет суммы регулярного пополнения вклада, произведем сначала с помощью финансовой функции MS EXCEL

ПЛТ()

.

Эта функция имеет такой синтаксис: ПЛТ(ставка; кпер; пс; [бс]; [тип]) PMT(rate, nper, pv, [fv], [type]) – английский вариант.


Примечание

. Функция

ПЛТ()

входит в надстройку «Пакет анализа». Если данная функция недоступна или возвращает ошибку #ИМЯ?, то включите или установите и загрузите эту надстройку (в MS EXCEL 2007/2022 надстройка «Пакет анализа» включена по умолчанию).

Примечание

. Обзор всех функций аннуитета

найдете здесь

.

Первый аргумент – Ставка. Это процентная ставка именно за период, т.е. в нашем случае за квартал, т.е. 10%/4 (в году 4 квартала). Кпер – общее число периодов платежей по аннуитету, т.е. 20 (4 кв. в году*5 лет) Пс –

Приведенная стоимость

, т.е. стоимость приведенная к текущему моменту.

В нашем случае, это начальная сумма на расчетном счету, т.е. 0. Бс –

Будущая стоимость вклада

в конце срока (по истечении числа периодов Кпер). Бс – требуемое значение остатка средств после последнего взноса. В нашем случае Бс = 1 000 000.


Примечание

. Если проценты начисляются в конце периода (каждого квартала), то тогда же производится пополнение вклада (т.к. указан аргумент ТИП=0 или опущен). Т.е., в последний день первого квартала мы пополнили счет на величину регулярного взноса, процент по вкладу за первый квартал =0.

Если проценты начисляются в начале периода (каждого квартала), то тогда же производится пополнение вклада (аргумент ТИП=1). Т.е., в первый день первого квартала мы пополнили счет на величину регулярного взноса, но так как процент по вкладу начисляется также в первый день, то за первый квартал будет начислено 0.

Решение1

Итак, ежеквартальный платеж может быть вычислен по формуле =ПЛТ(10%/4; 5*4; 0;1000000; 0), т.е. -39147,13р. Знак минус показывает, что мы имеем разнонаправленные денежные потоки: накапливаем деньги (тем самым отнимаем их из нашего бюджета), и получаем от банка 1000000, когда забираем деньги в конце срока.


Если период начисления процентов и регулярных взносов не совпадает

Если проценты начисляются, например, ежегодно, а взносы делаются ежемесячно, то такой денежный поток не является аннуитетом. Следовательно, функцию

ПЛТ()

и другие функции для расчета параметров аннуитета применять нельзя.

Таблица пополнения вклада

Составим таблицу пополнения вклада.

Вклад пополняется из 2-х источников: первый – это регулярные взносы, второй – начисленные за период проценты (на накопленную к данному моменту сумму вклада). Для

вычисления регулярно начисляемых процентов используется функция ПРПЛТ

(ставка; период; кпер; пс; [бс]; [тип])

Таким образом, вклад регулярно пополняется на величину

=-ПЛТ(10%/4; 20; 0;1000000; 0) ПРПЛТ(10%/4; период; 20; 0; 1000000; 0)

, где период – это номер периода, в который требуется подсчитать величину пополнения. Тот же самый результат дает формула

=-ОСПЛТ(10%/4; период; 20; 0; 1000000; 0)


Соотношение величины взноса и начисленных процентов хорошо демонстрирует график, приведенный в

файле примера

.

Примечание

. В статье

Аннуитет. Расчет периодического платежа в MS EXCEL. Погашение ссуды (кредита, займа)

показано как рассчитать величину регулярной суммы для погашения кредита или ссуды в случае применения аннуитетной схемы.

Читайте также:  Вклады Райффайзенбанка в Калуге: онлайн калькулятор депозитов в 2022 году

Зачем нужно считать накопления?

Допустим мы хотим купить жилье за 1 500 000 рублей. Покупку хотим сделать через 10 лет. Возникает вопрос, какую сумму необходимо класть в банк каждый год, чтобы через 10 лет получить 1 млн. 500 тыс? По идее стоит открыть вклад и копить. Ставка по депозиту в банке — 10% годовых.

Речь идет о вкладе с капитализацией, капитализация каждый год, под 10 процентов в год. Вопрос, какую сумму нужно откладывать с зарплаты? Нужно понимать, является ли эта сумма большой и хватит ли оставшихся денег на жизнь? Зная простую формулу, описанную ниже, можно без труда все посчитать.

Как использовать сложные проценты в инвестировании

Как вы уже знаете, получаемая от инвестиций прибыль — это важный инструмент, который на большой дистанции может во много раз увеличить доходность ваших вложений. Метод повторного вложения прибыли называется реинвестированием.

Безусловно, использовать эффект сложного процента должен каждый инвестор, однако на практике это не так просто как кажется. Существует несколько проблем, которые мешают теоретически супервыгодное реинвестирование реализовать в реальных условиях. Например, вряд ли вы слышали о людях, ставших миллиардерами через банковские депозиты.

Дело в том, что деньги постоянно обесцениваются из-за инфляции — постоянного повышения цен на товары и услуги. На самом деле ставка банковских депозитов обычно примерно равна инфляции или даже ниже, поэтому реальная доходность вкладов не впечатляет:

Даже если оставить удачный бескризисный отрезок 2022-2020 годов, доходность банковского вклада с учётом инфляции была в районе 1-2% годовых в рублях. Не говоря уже о доходности в долларах, которая после 2022 года, очевидно, находится в еще большем минусе.

Кроме инфляции сильно повлиять на итоговую доходность инвестиций могут разнообразные комиссии. Если их размер зависит от суммы инвестиций, убытки накапливаются по правилу сложных процентов, но уже с негативным эффектом. Это значит, что за несколько десятков лет инвестор может потерять сотни или даже тысячи процентов прибыли.

Такое часто встречается при инвестициях в ETF, где комиссия за управление достигает несколько процентов от депозита в год. Один из самых старых ETF под тикером SPY (инвестиционная стратегия — следование за индексом S&P 500) работает с 1993 года и берет с клиентов 0.

09% в год — немного, по сравнению с другими биржевыми фондами. Эта ставка со временем может меняться, но давайте для эксперимента представим что она всегда была такой — и сравним, как будет отличаться доходность инвестиций при комиссиях от 0 до 2% в год:

Как видите, даже из-за несчастных 0.09% инвестор на дистанции 27 лет потерял 25% прибыли. А вроде бы небольшая комиссия в 2% годовых срезает доходность почти в 3 раза — с 723% до 270%, и это еще не учтена инфляция. По причине скрытых комиссий высокая доходность активов на самом деле может оказаться в разы ниже, поэтому перед принятием решения об инвестировании важно учитывать даже мизерные расходы.

Куда же стоит инвестировать, чтобы использовать эффект сложного процента на максимум и минимизировать влияние инфляции и комиссий? Я бы выделил такие инструменты:

Конечно, в любых инвестициях можно использовать правило сложных процентов, но не везде это рекомендуется делать. Чем выше риски вложений, тем выгоднее просто выводить прибыль, поскольку при неудачных раскладах депозит может быть потерян.

Калькулятор вклада с капитализацией, пополнением и частичным снятием, пролонгацией

Если день окончания срока вклада приходится на нерабочий, то продлить срок до ближайшего рабочего дня

Если день начисления (или капитализации) процентов приходится на нерабочий, то:

произвести начисление в этот день

начислить заранее в предшествующий рабочий день

перенести начисление на последующий рабочий день

Непрерывное начисление процентов в ms excel

​ французскому методу количество​Вычисление по французскому​ К принимается равной​ ставку i нужно​

Ограничения и область применимости формул

Однако стоит учитывать, что данные расчеты подходят для студентов при решении задач, но не работают при точных банковских расчетах. Здесь вам может помочь депозитный калькулятор, поскольку он учитывает даты, выходные, ставку рефинансирования ЦБ. Т.е. данная формула не учитывает налог по депозиту. Налог же зависит от ставки рефинансирования ЦБ и валюты вклада.

Т.е. данный расчет будет приблизителен в любом случае. Тут нет учета числа дней в году также. Однако, если даны эталонные условия, как это делается в студенческих задачах, данную формулу можно с успехом применять в их решении. Данная формула позволяет получить ответ на следующие вопросы:

Формула может быть успешно использована для прогнозирования дохода по вашим средствам в банке — будь то вклад или доходная карта

Источник

Определяем сумму начисленных процентов


Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.

Сумма начисленных процентов I равна разности между величиной  наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1 i )^n, получим: I = S – P= Р*(1 i)^n – Р=P*((1 i)^n –1)=150000*((1 12%)^5-1) Результат: 114 351,25р.

Примеры решения задач по сложным процентам

В этом разделе мы пройдемся по некоторым типичным задачам на сложные проценты. Также вы найдете шаблоны расчётов в Excel, в которых можно поменять вводные данные и получить нужное вам решение.

Читайте также:  Расчет процентов по вкладу: формула, как рассчитать?

Задача №1. Рассчитать прибыль по вкладу на 5 лет под 10% годовых, начальная сумма вложений 100000 рублей (с капитализацией).

Находим конечную сумму вклада по формуле сложных процентов:

Результат: инвестор через 5 лет получит 61051 рублей прибыли.

Задача №2. Рассчитать прибыль по вкладу на 10 лет под 10% годовых с капитализацией. Начальная сумма вложений 50000 рублей, дополнительно каждый год начиная с первого счёт пополняется на 10000 рублей.

Сначала находим конечную сумму по формуле сложного процента с регулярными пополнениями:

Учитывая, сколько инвестировано за 10 лет (50000 сразу и еще 9 раз по 10000), вычисляем прибыль:

Результат: инвестор через 10 лет получит 139061 рубль прибыли, инвестировав 140000 рублей.

Задача №3. Рассчитать, сколько времени понадобится инвестору, чтобы увеличить капитал с 500000 до 1000000 рублей. Средняя доходность портфеля — 12% годовых, прибыль реинвестируется.

У нас есть все необходимые данные, используем одну из производных формул сложных процентов:

Решение: инвестору понадобится чуть больше 6 лет.

Задача №4. Посчитать среднюю процентную ставку, которая позволит превратить 100000 рублей в 500000 рублей за 10 лет путём инвестирования. Прибыль реинвестируется.

Используем одну из производных формул сложных процентов:

Решение: инвестору нужно вложить деньги под 17.5% годовых (довольно сложно на практике, кстати).

Думаю, этого достаточно. Если ваша задача не похожа ни на одну из предыдущих, возможно вам поможет информация из следующего раздела статьи.

Простые проценты в ms excel

​ на определенный срок,​ факторов: от величины​ процентов, чтобы сравнивать​ Этот пример дает​ в Excel в​номинальная_ставка – обязательный аргумент,​ каждый период рассчитывается​ 1 млн. рублей,​ возвращает соответствующее числовое​- при непрерывном​

​ силой роста (force​

​ листе Переменная ставка​ используется английский метод,​ и день погашения​Обыкновенные (обычные) проценты с​ в ином виде:​ то формулу для​ S представляет собой​ капитала, предоставляемого в​ разные ставки и​ ответы на эти​ виде: =СТЕПЕНЬ(1 (A1/A2);A2)-1, где:​ характеризующий числовое (десятичная​ как как сумма​ капитализация – ежемесячная.​ значение.​

​ наращении – 738​ of interest) и​ сделаны расчеты по​ то ЦЕНТРАЛЬНЫЙ БАНК​ ссуды принимаются за​ точным числом дней​где t — число дней функционирования​ определения наращенной суммы​ Будущую стоимость вклада,​ кредит, от срока,​ разную длительность.​ вопросы.​A1 – номинальная годовая​ дробь) или процентное​

​ средств на счету​Исходные данные:​Пример 1. Предприниматель получил​ 905,61р.​ обозначают символом​ этой формуле:​ РОССИЙСКОЙ ФЕДЕРАЦИИ опубликовал​ 1 день.​ ссуды (французский метод,​ сделки (число дней,​ необходимо изменить, разделив​ вычисленную по методу​

​ на который предоставлен​Предположим, вы положили $10000​Предположим, вы положили в​ ставка;​ значение номинальной годовой​ за прошедший период​Формула для расчета:​ ссуду в банковской​- при ежедневном​в отличие от ставки​=C7*(1 СУММПРОИЗВ(A12:A14;B12:B14))​ письмо от 27​

Сложный процент: как использовать секрет миллиардеров? формулы расчёта, калькулятор в excel

Привет всем читателям Блога Вебинвестора! Думаю, каждый из вас сталкивался с начислением процентов на денежную сумму — по депозиту, по кредиту, расчётом доходности инвестиций и так далее. Так вот, если повторить эту процедуру много раз, вложения начинают расти всё быстрее и быстрее благодаря эффекту сложного процента!

Эта статья входит в бесплатное обучение инвестициям с нуля на Блоге Вебинвестора. В комментариях к статье вы можете оставлять любые вопросы по теме и я постараюсь подробно на них ответить.

Спасибо за внимание, продолжаем!

Формула простого процента

По этой формуле мы можем рассчитать конечную сумму вклада без капитализации полученной прибыли. Для этого нужно знать начальную сумму вклада, процентную ставку за 1 период инвестирования и временной интервал. Если конечная сумма задана сразу и нужно найти другую неизвестную переменную, используйте производные формулы простого процента:

Формула расчета сложных процентов с пополнением

В нашем случае имеем следующие данные

Условия по вкладу
Планируемая сумма FV1 млн. 500 тыс
Ставка i10%
Срок n10 лет, начисление ежегодно
Капитализация процентовДа

Мы можем выразить из формулы нужный нам ежегодный взнос
formula5

Подставив в эту формулу наши значения получим

formula6

94118,09232 — именно эту сумму мы должны вкладывать каждый год, чтобы получить через 10 лет 1.5 млн. рублей.

Но на самом деле этот расчет приблизительный. Точный расчет можно получить с помощью калькулятора вкладов

results deposit

Выше приведен расчет депозита на 10 лет с 2 июля 2009. Ежегодное пополнение 94118,09232 Сумма получилась примерно такой(разница 35 рублей не существенна)

Формула сложного процента

По этой формуле мы можем посчитать конечную сумму вклада с учётом капитализации полученной прибыли, зная начальный депозит, процентную ставку и нужный временной интервал. Для решения задач также можно использовать производные формулы сложного процента:

На практике часто дело не заканчивается первоначальным депозитом — многие пользуются регулярными пополнениями, например делают регулярные инвестиции из зарплаты. Для этих случаев формула сложного процента становится длиннее:

где D — сумма регулярных пополнений банковского депозита. Обратите внимание, степень N-1 означает, что доливки начинаются со второго инвестиционного периода (если сумма дополнительных инвестиций вносится сразу, то N-1 меняется на N).

Ну что, удачи на экзаменах всем читающим меня студентам 🙂 Для закрепления далее мы разберем несколько примеров задач на сложные проценты.

Формулы простых и сложных процентов

Поскольку простые и сложные проценты чаще всего используются при расчете прибыли от банковских вкладов, продолжим на их примере. Для решения задач нам понадобится такая информация:

Оцените статью
Adblock
detector