Решение задач – Основные тенденции развития инвестиционных процессов в экономике России

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России Выгодные вклады

Задача 4. инвестор с целью инвестирования рассматривает 2 проекта, рассчитанных на 5 лет

Постановка задачи.

Инвестор с целью инвестирования рассматривает 2 проекта, рассчитанных на 5 лет. Проекты характеризуются следующими данными:

· по 1-му проекту – начальные инвестиции составляют 550 тыс. руб., ожидаемые доходы за 5 лет соответственно 100, 190, 270, 300 и 350 тыс. руб.;

· по 2-му проекту – начальные инвестиции составляют 650 тыс. руб., ожидаемые доходы за 5 лет соответственно 150, 230, 470, 180 и 320 тыс. руб.

Определить, какой проект является наиболее привлекательным для инвестора при ставке банковского процента – 15% годовых.

Алгоритм решения задачи.

Оценку привлекательности проектов выполним с помощью показателя чистой текущей стоимости (функции ЧПС).

Поскольку оба проекта предусматривают начальные инвестиции, вычтем их из результата, полученного с помощью функции ЧПС. (Начальные инвестиции по проекту не нужно дисконтировать, так как они являются предварительными, уже совершенными к настоящему моменту времени).

Для облегчения анализа полученного решения исходные данные задачи представим в виде таблицы и в соответствующие ячейки введем значения формул с функциями ЧПС (рис. 1.8). В результате вычислений получим, что чистая приведенная стоимость инвестиций во второй проект почти на 22 тыс. руб. выше, чем в первый.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 4.8– Иллюстрация решения задачи с предварительными инвестициями

Непосредственное задание параметров в формулах расчета, как и вычисления с использованием формулы (1.8), дают те же результаты.

Для первого проекта:

= ЧПС (15%; 100000; 190000; 270000; 300000; 350000) – 550000 = 203 691,03р.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Для второго проекта:

= ЧПС (15%; 150000; 230000; 470000; 180000; 320000) – 650000 = 225 392,59р.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Таким образом, второй проект является для инвестора более привлекательным.

В некоторой степени функции ПС и ЧПС похожи. Сравнивая их, можно сделать следующие выводы:

1) в функции ПС периодические выплаты предполагаются одинаковыми, а в функции ЧПС они могут быть различными;

2) в функции ПС платежи и поступления происходят как в конце, так и в начале периода, а в функции ЧПС предполагается, что все выплаты производятся равномерно и всегда в конце периода.

Из последнего вывода следует, что если денежный взнос осуществляется в начале первого периода, то его значение следует исключить из аргументов функции ЧПС и добавить (вычесть, если это затраты) к результату функции ЧПС. Если же взнос приходится на конец первого периода, то его следует задать в виде отрицательного первого аргумента массива значений функции ЧПС.

Примечание.

Нельзя непосредственно оценивать эффективность, например, с помощью функции ЧПС, нескольких инвестиционных проектов, имеющих разную продолжительность. Предполагая, что допускается реинвестирование, необходимо свести полученные результаты чистой текущей стоимости по каждому из них к единому по продолжительности периоду. С этой целью можно воспользоваться специальными методами.

Метод цепного повтора предполагает оценку эффективности проектов в рамках общего одинакового срока их действия. Находится наименьшее общее кратное продолжительности проектов и рассчитывается, сколько раз каждый из них должен повториться. Затем определяется с учетом повторов и реинвестирования чистая приведенная стоимость каждого из проектов, которая и сравнивается. Большему значению соответствует более привлекательный проект.

Суммарная чистая приведенная стоимость повторяющегося потока для каждого из проектов находится по формуле:

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России(1.9),

где: ЧПС(n) – чистая приведенная эффективность исходного проекта, найденная с учетом предварительных инвестиций;

n – длительность исходного проекта;

i – число повторов исходного проекта;

Ставка – норма дисконтирования за один период.

Метод бесконечного цепного повтора предполагает, что каждый из проектов может быть реализован неограниченное число раз.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России(1.10)

Date: 2022-10-19; view: 5489; Нарушение авторских прав

§

Постановка задачи.

Определить чистую текущую стоимость по проекту на 5.04.2005 г. при ставке дисконтирования 8%, если затраты по нему на 5.08.2005 г. составят 90 млн. руб., а ожидаемые доходы в течение следующих месяцев будут:

10 млн. руб. на 10.01.2006 г.;

20 млн. руб. на 1.03.2006 г.;

30 млн. руб. на 15.04.2006 г.;

40 млн. руб. на 25.07.2006 г.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 1.9– Иллюстрация оценки эффективности инвестиционных проектов разной продолжительности

Алгоритм решения задачи.

Поскольку в данном случае имеем дело с нерегулярными переменными расходами и доходами, для расчета чистой текущей стоимости по проекту на 5.04.2005 г. необходимо применить функцию ЧИСТНЗ.

Расчет чистой текущей стоимости нерегулярных переменных расходов и доходов с помощью функции ЧИСТНЗ осуществляется по формуле:

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России (1.11),

где: Чистнз – чистая текущая стоимость нерегулярных переменных выплат и поступлений;

Ставка – норма дисконтирования;

d1 –дата 0-й операции (начальная дата);

di дата i-й операции;

Значениеiсуммарное значение i–й операции;

n – количество выплат и поступлений.

Для нахождения решения задачи предварительно построим таблицу с исходными данными. Рассчитаем рядом в столбце число дней, прошедших от начальной даты до соответствующей выплаты. Затем найдем требуемый результат – с помощью функции ЧИСТНЗ и по формуле (1.11). Получим значение – 4 267 559 руб. 31 коп. Иллюстрация решения приведена на рис. 1.10.

Непосредственный ввод параметров в ЧИСТНЗ дает тот же результат:

=ЧИСТНЗ (8%;{0;-90;10;20;30;40}; B4:B8) = 4,26755931 млн. руб.

Вычисление решения задачи по формуле (4.11):

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Примечания.

1. При явной форме записи функции ЧИСТНЗ нельзя непосредственно указывать в каком бы то ни было допустимом формате массив дат в качестве ее параметров. Обязательно следует ссылаться на ячейки, где эти даты приведены.

2. Аналитические вычисления по формулам следует выполнять на листе Excel (а не на калькуляторе).

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 1.10– Иллюстрация примера использования функции ЧИСТН

Задания для самостоятельной работы

Показатели Проект 1 Проект 2
Инвестиции
Доходы:    
1 год
2 год
3 год

1. Определить, какой из двух представленных проектов является наиболее привлекательным для инвестора. Ставка банковского процента составляет 13% годовых. Другие данные о проектах приведены в таблице.

2. Определить чистую текущую стоимость проекта, если ставка дисконтирования равна 12%. Проект требует начальных инвестиций в размере 5 млн. руб. Предполагается, что в конце 1 года убыток составит 900 тыс. руб., а в следующие 3 года ожидается доход в размере: 1 500 тыс. руб., 3 200 тыс. руб. и 3 800 тыс. руб. соответственно.

Рассчитать также чистую текущую стоимость проекта при условии, что убыток в конце 1 года будет 1 100 тыс. руб.

3. Дать заключение по инвестиционному проекту для 5-ти регионов, если известно, что:

· проект рассчитан на 5 лет;

· ставка дисконтирования по 1-му региону составляет 5%, по 2-му – 6%, по 3-му – 7%, по 4-му – 8%, по 5-му – 9%.

· Другие данные о проекте приведены в таблице.

Указания.

Задачу следует решать, используя средство Таблица подстановки из меню команды Данные. Результаты представить в графическом виде.

4. В инвестиционную компанию для рассмотрения поступили два различных по продолжительности инвестиционных проекта. Предполагаемые данные о проектах приведены в таблице. Необходимо:

· сравнить проекты и выбрать наиболее эффективный из них;

· проанализировать проекты при одинаковых объемах инвестируемых средств.

Проект 1 Проект 2
Ставка дисконтирования 9% Ставка дисконтирования 11%
Объем инвестиций 120 тыс. руб. Объем инвестиций 100 тыс. руб.
Годы: Денежный поток (тыс. руб.) Годы: Денежный поток (тыс. руб.)
   
   

5. Рассматриваются два варианта покупки недвижимости. Первый вариант предполагает единовременную оплату в размере 700 тыс. руб. Второй вариант рассчитан на ежемесячную оплату по 9 тыс. руб. в течение 13 лет.

· Определить, какой вариант является более выгодным, если ставка процента равна: а) 10% годовых; б) 13% годовых.

· Рассчитать сумму ежемесячных взносов при ставке 10% годовых, чтобы второй вариант являлся более предпочтительным.

6. Определить текущую стоимость обязательных ежеквартальных платежей размером 80 тыс. руб. в течение 7 лет, если процентная ставка составляет 15% годовых.

7. Рассчитать суммы, которые необходимо положить на депозит для того, чтобы через 6 лет получить 10 млн. руб. при различных вариантах начисления процентов: ежемесячном, ежеквартальном, полугодовом и годовом. Процентная ставка – 11% годовых.

8. Предприниматель получил в банке кредит под 12% годовых. Какова текущая стоимость кредита, если предприниматель должен в течение 7 лет перечислять в банк по 253 000 руб. ежегодно?

9. Рассчитать чистую текущую стоимость проекта, если:

· к концу первого года его инвестиции составят 34 тыс. руб., а ожидаемые доходы в последующие годы соответственно будут: 5 тыс. руб., 17 тыс. руб. и 25 тыс. руб.; годовая учетная ставка – 12%;

· решить задачу с теми же условиями, но с учетом предварительной инвестиции в проект 10 тыс. руб.;

· проанализировать получаемую чистую текущую стоимость проекта при различных первоначальных объемах инвестиций и разных процентных ставках.

10. Для приобретения квартиры молодая семья планирует в дополнение к собственным накоплениям в размере $12 000 взять в банке ипотечный кредит сроком на 20 лет под 11,5% годовых. Ежемесячно семья может выплачивать по кредиту не более $700.

· На какой кредит может рассчитывать семья? Какой может быть стоимость приобретаемой квартиры?

· Какой может быть стоимость приобретаемой квартиры, если взять в банке кредит с другими условиями: а) на 10 лет под 10,5% годовых; б) на 15 лет под 11% годовых?

· Используя команду Таблица подстановки, рассчитать возможную стоимость приобретаемой квартиры: а) при различных размерах собственных накоплений и разных сроках действия кредита; б) при различных ежемесячных платежах по кредиту и разных сроках его действия.

11. У Вас на депозитном счету 10 570,5 рублей, положенные под 1% ежемесячно. Счет открыт 12 месяцев назад. Каков был начальный вклад?

12. Ежегодная плата за приобретенную недвижимость на следующие 25 лет составляет 25 000 рублей. Если считать покупку недвижимости займом с 8% годовых, то какой должна быть его величина, чтобы рассчитаться с займом через 25 лет?

13. Если использовать учетную ставку 0,75% в месяц, сколько необходимо выплатить вначале за имущество, которое по оценке будет стоить 5 000 000 рублей? Ежемесячная плата составляет 25 000 рублей в течение пяти лет.

14. Вы можете позволить себе ежемесячные выплаты 2 500 рублей со ставкой 0,45% (в месяц) в течение 20 лет. Сколько можно занять, чтобы полностью погасить заем?

Определение срока платежа и процентной ставки

В ходе решения задач, связанных с аннуитетом, общее количество периодов выплаты определяется с помощью функции КПЕР (ставка; плт; пс; бс; тип). Процентная ставка за период вычисляется с применением функции СТАВКА (кпер; плт; пс; бс; тип; предположение).

Date: 2022-10-19; view: 3742; Нарушение авторских прав

§

Постановка задачи.

Предположим, что для получения через 2 года суммы в 1 млн. руб. предприятие готово вложить 250 тыс. руб. сразу и затем каждый месяц по 25 тыс. руб. Определить годовую процентную ставку.

Алгоритм решения задачи.

В данной задаче сумма в 1 млн. руб. формируется за счет приведения к будущему моменту времени начального вклада 250 тыс. руб. и фиксированных ежемесячных выплат.

Определим значение процентной ставки за месяц с помощью функции СТАВКА, имеющей аргументы: Кпер= 2*12 = 24 (месяца);Плт= -25; Пс= -250; Бс= 1000. Тогда:

= СТАВКА (24;-25;-250;1000) = 1,05%

Для вычисления годовой процентной ставки значение, выданное функцией СТАВКА, следует умножить на 12: 1,05%*12 = 12,63%. Процент на вклад должен быть не меньше этой величины.

Читайте также:  Решение задач по инвестиционному анализу 2

Иллюстрация применения функции СТАВКА в выражениях формулы приведена на рис. 1.13.

Обратим внимание, что функция СТАВКА вычисляется методом последовательного приближения и может не иметь решения или иметь несколько решений.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 1.13. Фрагмент экрана при использовании функции СТАВКА

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Сначала рассчитывается текущий объем инвестиции при ставке, задаваемой аргументом функции СТАВКА предположение,по умолчанию равным 10%.Если результат получается больше 0, то значение процентной ставки увеличивается, и расчет текущего объема инвестиции повторяется. Если результат оказывается меньше 0, то для следующего приближения значение процентной ставки уменьшается. Процесс завершается, когда решение получится с точностью до 0,0000001 или когда количество итераций превысит 20. В последнем случае считается, что решения нет (формируется ошибка #ЧИСЛО!), и для повторного поиска решения следует изменить значение аргумента предположение (рис. 1.14). Это можно сделать, добавив его значение из интервала между 0 и 1 в строке формул или, сдвинув ползунок в панели функции СТАВКА, в появившейся строке ввести новое значение аргумента предположение.

Примечания.

1. Следует помнить, что результатами функций КПЕР и СТАВКА являются число периодов и периодическая процентная ставка текущей операции, поэтому для годовых результатов требуются преобразования.

2. Следует также помнить, что для получения корректного результата при работе с функциями КПЕР и СТАВКА, аргументы Бс и Пс должны иметь противоположные знаки. Данное требование вытекает из экономического смысла подобных операций.

Задания для самостоятельной работы

1. Ссуда размером 58 000 руб., выданная под 12% годовых, погашается ежеквартальными платежами по 6 200 руб. Рассчитайте срок погашения ссуды.

2. Предполагается, что ежегодные доходы от реализации проекта составят 30 млн. руб. Рассчитать срок окупаемости проекта, если затраты по проекту к началу поступления доходов составят 70 млн. руб., а норма дисконтирования – 11,3%.

3. Вычислите, через сколько лет ежемесячные взносы в сумме 15 000 руб. принесут доход в 500 000 руб. при ставке процента 11,9% годовых.

4. Какой вариант инвестиций из трех предпочтительнее по сроку окупаемости? Варианты инвестиций характеризуются потоками платежей, приведенными в таблице (в тыс. руб.).

Вариант Начальные затраты Ежегодные поступления
-200
-270
-330

5. Пусть в долг на 3,5 года дана сумма 1 000 тыс. руб. с условием возврата 1500 тыс. руб. Определить, под какой процент годовых одолжена сумма?

6. Выдан кредит 500 тыс. руб. на 2,5 года. Проценты начисляются раз в полгода. Определить величину процентной ставки за период, если известно, что возврат составит 700 тыс. руб.

7. Вычислить процентную ставку для трехлетнего займа размером 3 млн. руб. с ежеквартальным погашением по 300 тыс. руб.

8. Клиент внес в банк 10 000 руб. и к концу года рассчитывает на 15 000 руб. Проценты начисляются ежемесячно. Определить процентную ставку по вкладу.

9. Кредит в 750 тыс. руб. предоставлен под 12% годовых и предусматривает ежемесячные платежи в размере 8632,5 руб. Определить срок погашения кредита.

10. Ваш остаток на счете пять лет назад составлял 25 000 рублей. В конце каждого года Вы добавляли 4500 рублей. Сегодня баланс равен 70 000 рублей. Какой была Ваша среднегодовая ставка?

11. Имущество с текущей стоимостью 2 000 000 рублей продается в кредит с обязательством погашения кредита в течение пяти лет. Покупатель оплатил 1 850 000 рублей. Не принимая во внимание рост стоимости имущества, определите начальную ставку?

12. Вы заплатили 1 500 000 рублей за имущество, внося ежемесячно по 15 000 рублей. Если Вы продадите имущество через пять лет за 1 900 000 рублей, какой процент сможете получить?

13. Соглашение о потребительском займе предоставляет Вам кредит 10 000 рублей с оплатой 2 000 рублей в месяц в течение 12 месяцев. Какова его процентная ставка?

Расчет эффективной и номинальной ставки процентов

Часто на практике возникает необходимость сравнения условий финансовых операций, предусматривающих различные периоды начисления процентов. В этом случае осуществляют приведение соответствующих процентных ставок к их годовому эквиваленту.

Реальная доходность финансового контракта с начислением сложных процентов несколько раз в год измеряется эффективной процентной ставкой, которая показывает, какой относительный доход был бы получен за год от начисления процентов.

Зная эффективную процентную ставку, можно определить величину соответствующей ей годовой номинальной процентной ставки.

Для расчетов указанных величин используются функции – НОМИНАЛ (эффективная_ставка; кол_пер) и ЭФФЕКТ (номинальная_ставка; кол_пер).

Date: 2022-10-19; view: 5917; Нарушение авторских прав

§

Постановка задачи.

Определить эффективную процентную ставку, если номинальная ставка составляет 9%, а проценты начисляются:

а) раз в полгода;

б) поквартально;

в) ежемесячно.

Алгоритм решения задачи.

Для определения эффективной процентной ставки воспользуемся функцией ЭФФЕКТ. Непосредственный ввод аргументов дает следующие значения:

а) = ЭФФЕКТ (9%; 2) = 9,2%, в) = ЭФФЕКТ (9%; 12) = 9,38%.
б) = ЭФФЕКТ (9%; 4) = 9,31%  

Расчет эффективной ставки выполняется по формуле:

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России (1.13),

где Кол_пер – количество периодов в году, за которые начисляются сложные проценты.

Выполнив расчет по формуле (1.13), получим тот же результат. В качестве примера приведем вычисления для варианта б).

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Иллюстрация решения с помощью панели функции приведена на рисунке 1.15.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок1.15– Фрагмент окна при использовании функции ЭФФЕКТ

Примечания.

1. Если Номинальная_ставка ≤ 0 или если Кол_пер < 1, то функция ЭФФЕКТ возвращает значение ошибки #ЧИСЛО!

2. Если функция недоступна или возвращает ошибку #ИМЯ?, следует загрузить надстройку «Пакет анализа».

Date: 2022-10-19; view: 1952; Нарушение авторских прав

§

§

Постановка задачи.

В целях покупки недвижимости инвестор взял в банке кредит в сумме 12 млн. руб. Определить ежемесячные выплаты по кредиту для разных процентных ставок и сроков погашения кредита.

Алгоритм решения задачи.

Ежемесячные выплаты по займу рассчитываются с использованием функции ПЛТ. Однако аргументы данной функции – процентная ставка и срок погашения кредита – по условию могут принимать различные значения. Поэтому рассмотрим влияние этих параметров на заданную функцию. Воспользуемся механизмом Таблица подстановки из меню команды Данные. Выполним следующую последовательность действий.

1. В ячейку электронного листа С3 введем числовое значение суммы кредита (12 000 000).

2. В ячейки С4, С5 введем произвольные (условные) значения процентной ставки (например, 5%) и срока погашения кредита в годах (например, 1), которые нам понадобятся при построении Таблицы подстановки.

3. В ячейки В9:В22 введем различные значения процентных ставок. В ячейки С9:К9 – возможные сроки погашения.

4. В ячейку В9 введем формулу для расчета ежемесячных выплат по займу: = ПЛТ (5%/12; 1*12; 12 000 000).

Заметим, что в качестве аргументов функции можно вводить как адреса ячеек, так и конкретные исходные значения.

5. Выделим интервал для таблицы данных, включающий формулу и все исходные данные, – В9:К22.

6. Выберем команды Данные → Таблица подстановки. В появившемся диалоговом окне (рис. 1.22) заполним соответствующие поля. Поскольку наша таблица зависит от двух параметров, то в поле «Подставлять значения по столбцам в:» введем ссылку на ячейку С5 (срок погашения), а в поле

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

«Подставлять значения по строкам в» – ссылку на ячейку С4 (ставка).

7. Подтвердим ввод нажатием клавиши [Enter] или кнопкой ОК.

Таблица ежемесячных выплат по кредиту с помощью таблицы подстановки будет сформирована (рис. 1.23).

Задания для самостоятельной работы

1. Разработайте план погашения кредита, полученного на следующих условиях:

а) 700 тыс. руб. сроком на 6 лет под 9% годовых при выплате один раз в конце года.

б) 900 тыс. руб. сроком на 9 лет под 7% годовых при выплате один раз в квартал.

в) 500 тыс. руб. сроком на 4 лет под 11% годовых при выплате один раз в месяц.

2. Ипотечный кредит размером 2 200 000 руб. предоставлен по ставке 12% годовых сроком на 30 лет и требует ежемесячных платежей. Каков будет остаток основной суммы через 8 лет?

3. Кредит в сумме 5 000 000 руб. предоставлен под 20% годовых сроком на 10 лет. Рассчитать величину остатка основной суммы без учета выплаченных процентов на начало третьего года.

4. Рассчитать сумму процентов, начисленных на вклад в 750 тыс. руб. за 2 года, если банк начисляет проценты ежеквартально из расчета 28% годовых. Какова должна быть годовая депозитная ставка при прочих равных условиях, если за 2 года необходимо удвоить первоначальный вклад?

5. Потребитель получает заем на покупку автомобиля 20 000$ под 8% годовых сроком на три года при ежемесячных выплатах. Какова будет сумма по процентам и основной платеж за первый и последний месяцы выплат?

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 1.23. Фрагмент окна с таблицей ежемесячных выплат по кредит

Определить первоначальные затраты по проекту, если известно, что в последующие 4 года ожидаемые доходы будут соответственно: 300, 100, 400, 700 тыс. руб., при 9% норме дохода по проекту.

Определить внутреннюю скорость оборота инвестиции размером 55 тыс. руб., если в течение последующих 3 лет ожидаются годовые доходы соответственно: 9 тыс. руб., 17 тыс. руб., 23 тыс. руб.; на четвертый год ожидается убыток в размере 11 тыс. руб., а на пятый год – доход в размере 20 тыс. руб.

Год Денежный поток (тыс. руб.)

Для реализации проекта потребовались первоначальные вложения за счет кредита в сумме 700 тыс. руб., взятого на 4 года по ставке 12% годовых. Ожидаемые доходы от проекта представлены в таблице.

· Рассчитать внутреннюю ставку доходности проекта.

· Рассчитать модифицированную ставку доходности проекта по истечении 4 лет, если все доходы реинвестировать в другой проект по ставке 15% годовых.

· Оценить экономическую эффективность проекта с учетом рыночной нормы дохода равной 11% (без реинвестирования доходов и с реинвестированием доходов).

Date: 2022-10-19; view: 4282; Нарушение авторских прав

§

Обзор ключевых категорий и положений

В Гражданском кодексе РФ (статья 142) ценная бумага определена как документ, удостоверяющий с соблюдением установленной формы и обязательных реквизитов имущественные права, осуществление или передача которых возможны только при его предъявлении.

Все ценные бумаги делятся на виды и типы.

Тип образует сочетание различных комбинаций видов ценных бумаг, объединяемых каким-либо общим признаком. Тип ценных бумаг подразделяется на их виды.

Вид – это качественная определенность какой-либо ценной бумаги, отличающая ее от других ценных бумаг. В рамках определенного вида ценной бумаги выделяются ее разновидности, которые в ряде случаев делятся еще дальше. Например, среди фондовых ценных бумаг, являющихся типом, можно выделить такие виды как акция или облигация. Разновидностью акций являются обыкновенные или привилегированные акции. Обыкновенная акция, в свою очередь, может быть одноголосной или многоголосной, с номиналом или без номинала и т.п.

Выделяют также срочные и бессрочные ценные бумаги. Последние представляют собой ценные бумаги, срок обращения которых ничем не регламентирован. Среди срочных ценных бумаг, т.е. имеющих установленный срок существования при их выпуске, выделяют краткосрочные (срок обращения до одного года); среднесрочные (срок обращения свыше одного года в пределах до 5-10 лет) и долгосрочные (срок обращения до 20-30 лет).

Основными видами ценных бумаг с точки зрения их экономической сущности являются: акции, облигации, депозитный и сберегательный сертификат, вексель, чек, коносамент, варрант, опцион, фьючерсный контракт.

Читайте также:  Инвестиционные проекты: виды, методы оценки, анализа и расчета

Ценная бумага обладает определенным набором характеристик, среди которых можно выделить такие, как временные характеристики (срок существования и происхождение ценной бумаги), пространственные характеристики (форма существования, национальная и территориальная принадлежность), рыночные характеристики (тип использования, форма собственности и вид эмитента, форма выпуска, наличие дохода и другие).

Отметим основные экономические характеристики ценной бумаги.

Ликвидность, т.е. способность ценной бумаги к реализации, степень ее обратимости в денежные средства.

Доходность, предусматривающая отношение дохода, полученного от ценной бумаги (дивиденда, процента, премии), к инвестициям в нее.

Номинал – это стоимость ценной бумаги, которая указана на ней.

Курс – это цена, по которой ценные бумаги продаются и/или покупаются на фондовом рынке.

Надежность, предполагающая способность ценных бумаг выполнять возложенные на них функции в течение определенного промежутка времени в условиях равновесного рынка.

Каждый вид ценной бумаги характеризуется наличием в ней обязательных реквизитов – название ценной бумаги, серия, номер, наименование эмитента, наименование держателя ценной бумаги, ее номинальная стоимость и некоторые другие имущественно-обязательные условия.

Финансовые функции для работы с ценными бумагами

Для расчета и анализа различного типа ценных бумаг в Excel реализована специальная группа функций, расширенных специальным дополнением «Пакет анализа». Перечень таких функций представлен в таблице 1.4. В таблице 1.5 приведены описания аргументов функций.

Таблица 1.4– Назначение и форматы финансовых функций для анализа ценных бумаг

Формат Назначение
ДАТАКУПОНПОСЛЕ (дата_согл;
дата_вступл_в_силу;
частота; базис)
Возвращает число, представляющее дату следующего купона от даты соглашения.
ДАТАКУПОНДО (дата_согл;
дата_вступл_в_силу;
частота; базис)
Возвращает число, представляющее дату предыдущего купона до даты соглашения.
ДЛИТ (дата_согл;
дата_вступл_в_силу; купон;
доход; частота; базис)
Рассчитывает ежегодную продолжительность действия ценных бумаг, по которым осуществляются периодическая выплата процентов.
ДНЕЙКУПОН (дата_согл;
дата_вступл_в_силу; частота; базис)
Возвращает число дней в периоде купона, который содержит дату расчета.
ДНЕЙКУПОНДО (дата_согл;
дата_вступление_в_силу;
частота; базис)
Возвращает количество дней от начала действия купона до даты соглашения.
ДНЕЙКУПОНПОСЛЕ
(дата_согл; дата_вступл_в_силу;
частота; базис)
Возвращает число дней от даты расчета до срока следующего купона.
ДОХОД (дата_согл;
дата_вступл_в_силу; ставка;
цена; погашение; частота; базис)
Возвращает доходность ценных бумаг (облигаций), по которым производятся периодические выплаты процентов.
ДОХОДКЧЕК (дата_согл;
дата_вступл_в_силу; цена )
Возвращает ставку годового дохода по ценным бумагам краткосрочного действия (доходность по казначейскому чеку или векселю).
ДОХОДПЕРВНЕРЕГ
(дата_согл; дата_вступл_в_силу;
дата_выпуска; первый_купон;
ставка; цена; погашение;
частота; базис)
Возвращает доход по ценным бумагам с нерегулярным (коротким или длинным) первым периодом.
ДОХОДПОГАШ (дата_согл;
дата_вступл_в_силу;
дата_выпуска; ставка; цена;
базис)
Возвращает годовую доходность ценных бумаг, по которым проценты выплачиваются при наступлении срока погашения.
ДОХОДПОСЛНЕРЕГ
(дата_согл; дата_вступл_в_силу;
последняя_выплата; ставка;
цена; погашение; частота; базис)
Возвращает доход по ценным бумагам с нерегулярным (коротким или длинным) последним периодом.
ДОХОДСКИДКА (дата_согл;
дата_вступл_в_силу; цена;
погашение; базис)
Возвращает годовую доходность по ценным бумагам, на которые сделана скидка.
ИНОРМА (дата_согл;
дата_вступл_в_силу;
инвестиция; погашение; базис)
Возвращает процентную ставку для полностью инвестированных ценных бумаг.
МДЛИТ(дата_согл;
дата_вступл_в_силу; купон;
доход; частота; базис)
Возвращает модифицированную продолжительность Макалея для ценных бумаг с предполагаемой номинальной стоимостью 100 руб., включая поправку, связанную с рыночным доходом и ежегодными выплатами по купонам.
НАКОПДОХОД (дата_выпуска;
первый_доход; дата_согл;
ставка; номинал; частота; базис)
Возвращает накопленный процент по ценным бумагам с периодической выплатой процентов.
НАКОПДОХОДПОГАШ
(дата_выпуска; дата_согл;
ставка; номинал; базис)
Возвращает накопленный процент по ценным бумагам, процент по которым выплачивается в срок погашения.
ПОЛУЧЕНО (дата_согл;
дата_вступл_в_силу;
инвестиция; скидка; базис)
Возвращает наращенную сумму, полученную к сроку погашения полностью обеспеченных ценных бумаг.
РАВНОКЧЕК (дата_согл;
дата_вступл_в_силу; скидка)
Возвращает эквивалентный облигации доход по казначейскому векселю.
СКИДКА (дата_согл;
дата_вступл_в_силу; цена;
погашение; базис)
Возвращает ставку дисконтирования для ценных бумаг.
ЦЕНА (дата_согл;
дата_вступл_в_силу; ставка;
доход; погашение; частота;
базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, по которым выплачивается периодический процент.
ЦЕНАКЧЕК (дата_согл;
дата_вступл_в_силу; скидка)
Возвращает цену на 100 руб. номинальной стоимости для бумаг краткосрочного действия (казначейского чека или векселя).
ЦЕНАПЕРВНЕРЕГ
(дата_согл; дата_вступл_в_силу;
дата_выпуска; первый_купон; ставка; доход; погашение;
частота; базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг для нерегулярного (короткого или длинного) первого периода купонных выплат.
ЦЕНАПОГАШ (дата согл;
дата_вступл_в_силу;
дата_выпуска; ставка;
доходность; базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, по которым процент выплачивается в срок погашения (в срок вступления в силу одновременно с выкупом).
ЦЕНАПОСЛНЕРЕГ
(дата_согл; дата_вступл_в_силу;
Последняя выплата; ставка;
доход; погашение; частота;
базис)
Возвращает цену за 100 рублей нарицательной стоимости ценных бумаг для нерегулярного (короткого или длинного) последнего периода купона.
ЦЕНАСКИДКА (дата согл;
дата_вступл_в_силу;
скидка; погашение; базис)
Возвращает цену за 100 рублей номинальной стоимости ценных бумаг, на которые сделана скидка вместо выплаты процентов.
ЧИСЛКУПОН (дата_согл;
дата_вступл_в_силу; частота; базис)
Возвращает количество купонов, которые могут быть оплачены между датой соглашения и сроком вступления в силу, округляемое до ближайшего целого купона.

Таблица 1.5– Аргументы финансовых функций Excel анализа ценных бумаг

Аргумент Назначение аргумента
БазисИспользуемый способ вычисления дня.
Дата_вступл_в_силуДата погашения ценной бумаги.
Дата_выпускаДата выпуска ценных бумаг.
Дата_соглДата приобретения ценной бумаги, дата инвестиций в ценные бумаги (более поздняя, чем дата выпуска).
Доход, доходностьГодовой доход по ценным бумагам.
ИнвестицияОбъем инвестиции в ценные бумаги (цена приобретения).
КупонГодовая ставка процента для купонов по ценным бумагам.
НоминалНоминальная стоимость ценной бумаги (по умолчанию – 1000 руб.).
Первый_доходДата окончания первого периода (дата первой выплаты процентов по ценной бумаге).
Первый_купонДата первого купона для ценных бумаг в числовом формате.
ПогашениеВыкупная стоимость ценных бумаг за 100 руб. номинальной стоимости.
Последняя_выплатаДата последнего купона для ценных бумаг (последней выплаты процентов) .
СкидкаСкидка на казначейский вексель, учетная ставка в процентах к цене погашения.
СтавкаГодовая ставка процента на момент выпуска ценных бумаг.
ЦенаЦена ценных бумаг за 100 руб. номинальной стоимости.
ЧастотаКоличество выплат по купонам за год.

Примечания.

1) Аргумент Частота (Периодичность) задается как число, принимающее следующие значения в зависимости от количества выплат по купонам за год:

1 – один раз в год (ежегодная выплата);

2 – два раза в год (полугодовая выплата);

4 – четыре раза в год (ежеквартальная выплата).

2) Аргумент Базис не является обязательным, однако играет важную роль, поскольку влияет на точность вычислений. В зависимости от способа вычисления временного периода аргумент Базис может принимать следующие значения:

0 – US(NASD) – американский стандарт, месяц равен 30, а год – 360 дням; принимается по умолчанию;

1 – фактический/фактический – фактическая длина месяца и года;

2 – фактический/360 – фактическая длина месяца, год равен 360 дням;

3 – фактический/365 – фактическая длина месяца, год равен 365 дням;

4 – европейский 30/360 – европейский стандарт, длина месяца равна 30 дням, длина года принимается 360 дней.

Следует отметить, что все даты должны быть выражены в числовом формате. Для этих целей служит функция ДАТА (год; месяц; день), которая преобразует заданную дату в числовой формат или, если дата задана текстом, то функция ДАТАЗНАЧ (дата_как_текст). Кроме того, Excel предоставляет возможность автоматически преобразовать дату в числовой формат, если в рассматриваемых функциях используется ссылка на ячейку, в которой содержится дата. Например, дату 3 января 2006 г. следует вводить в числовом формате как 38720.

Технология применения финансовых функций для анализа ценных бумаг

Date: 2022-10-19; view: 1883; Нарушение авторских прав

§

Постановка задачи.

Рассматривается возможность приобретения облигаций трех типов, каждая из которых с номиналом в 100 руб. и сроком погашения 9.10.2007 г. Курсовая стоимость этих облигаций на дату 25.07.2005 г. составила соответственно 90, 80 и 85 руб.

Годовая процентная ставка по купонам (размер купонных выплат) составляет:

для первой облигации 8 % при полугодовой периодичности выплат;

для второй облигации – 5 % при ежеквартальной периодичности выплат;

для третьей облигации – 10 % с выплатой 1 раз в год.

Расчеты ведутся в базисе фактический/фактический.

Провести анализ эффективности вложений в покупку этих облигаций, если требуемая норма доходности составляет 15%

Алгоритм решения задачи.

Чтобы оценить эффективность вложений в покупку каждой из облигаций, рассчитаем их годовую доходность, используя функцию ДОХОД:

ДОХОД (дата_согл; дата_вступл_в_силу; ставка; цена; погашение; частота; базис)

Для решения задачи построим на листе Excel таблицу, в ячейки которой введем исходные данные и формулы расчета требуемых величин (рис. 1.27).

Выполним также расчет доходности, непосредственно задавая значения аргументов в функции ДОХОД.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 1.27– Применение функции ДОХОД для оценки доходности облигаций

Аргументы, содержащие даты, введем с помощью функции ДАТА (можно также указывать ссылки на ячейки, содержащие даты).

Для облигации первого типа:

=ДОХОД (ДАТА(2005;7;25);ДАТА (2007;10;9);8%;90;100;2;1)= 13,36%

Для облигации второго типа:

=ДОХОД (ДАТА(2005;7;25);ДАТА (2007;10;9);5%;80;100;4;1)= 15,93%

Для облигации третьего типа:

=ДОХОД (ДАТА(2005;7;25);ДАТА (2007;10;9);10%;85;100;1;1)= 18,83%

Результаты, полученные различными способами, совпадают.

Доходность по второй и третьей облигациям (15,93% и 18,83% соответственно) выше заданной нормы (15%), а по первой облигации (13,36%) – ниже. Следовательно, целесообразно покупать облигации второго и третьего типов.

Date: 2022-10-19; view: 1148; Нарушение авторских прав

§

§

§

Постановка задачи.

Определить стоимость ценной бумаги номиналом 1 000 руб. На ценную бумагу установлена скидка размером 11,5%. Дата приобретения ценной бумаги – 27 января 2006 г. Дата погашения – 10 января 2007 г. Расчеты выполнить в базисе Европейский/360.

Алгоритм решения задачи.

Определить стоимость ценной бумаги на дату покупки с учетом действующей скидки можно с помощью встроенной функции ЦЕНАСКИДКА, имеющей следующий формат:

=ЦЕНАСКИДКА (дата_согл; дата_вступл_в_силу; скидка; погашение; базис)

Функция при нахождении цены со скидкой реализует вычисления, вытекающие из формулы (4.18):

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России (1.19)

Используя функцию, найдем решение задачи, иллюстрация которого приведена на рис. 1.32. Как видно, на дату покупки стоимость ценной бумаги номиналом 1 000 руб. равна 890 руб. 43 коп. Различные варианты применения функции, а также формула (1.19) дают один и тот же результат:

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Задания для самостоятельной работы

1. Вексель номиналом 3 млн. руб. выдан 1.02.2006 г. сроком на 4 месяца. Учетная ставка составляет 15% годовых. Определить сумму, которую получит векселедатель, если при расчете используется стандартный базис 30/360.

2. Определить номинал векселя, выданного на 3 месяца при учетной ставке в 13% годовых, если векселедатель получил 17 тыс. руб.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 1.32– Иллюстрация использования функции ЦЕНАСКИДКА

3. Владелец векселя, выданного коммерческим банком, получит по нему через 4 года 180 000 руб. Определите, за какую сумму вексель был приобретен, если его доходность составляет 14% годовых.

4. Рассматривается возможность приобретения нескольких облигаций. Облигация № 1 имеет купон 13% годовых с выплатой 1 раз в год и продается по курсу 72,5. Облигация № 2 имеет купон 15% годовых с выплатой 1 раз в год и продается по курсу 65,5. Облигация № 3, имеющая купон 16 % годовых с выплатой 1 раз в год, продается по номиналу. Определите, какую облигацию следует приобрести?

5. Облигация номиналом 500 000 руб. с датой соглашения – 1.06.2005 г. и датой вступления в силу – 25.05.2006 г. имеет купон 7,5 % годовых при полугодовой периодичности выплат. Годовой доход составляет 8,5 %. Способ вычисления дня – фактический/360. Определить размер купонной выплаты и ежегодную продолжительность действия облигации.

Читайте также:  Задачи для самостоятельного решения — Студопедия

6. Сберегательный сертификат коммерческого банка номиналом 200 тыс. руб. и сроком погашения через 6 месяцев был приобретен 12.02.2006 г. Процентная ставка по сертификату равна 30% годовых. Определить величину абсолютного дохода по сертификату на момент погашения при европейском способе начисления дня.

7. Номинальная стоимость обыкновенной акции 300 руб. Курс на вторичном рынке 330 руб. Дивиденды выплачены в размере 160 руб. Определить доходность акции.

8. Облигация номиналом 200 000 руб. и сроком погашения через 10 лет, имеет купон 5% годовых с выплатой 1 раз в полгода. Облигация приобретена через 3 года после выпуска. Дата выпуска – 20.03.2003 г. Определите цену покупки данной облигации и размер купонной выплаты, если требуемая норма доходности была равна 15%. Проанализируйте стоимость покупки облигации при разных вариантах норм доходности.

9. Рассматривается возможность приобретения облигации. Срок действия облигации с 15.06.2006 г. по 15.10.2006 г. Требуемая доходность равна 40 % годовых. Определите приемлемую стоимость для приобретения облигации на 20.09.2006 г.

10. Чеки казначейства имеют дату соглашения 14.08.2006 г. и дату погашения 14.12.2006 г. Норма скидки составляет 9%. Определить цену и доход по казначейскому чеку, а также годовой доход по казначейским чекам, эквивалентный доходу по облигациям.

11. На 15 июня текущего года имеется некоторый резерв наличности, равный 10 400 руб., который может быть внесен на депозит сроком на полгода или потрачен на покупку ценных бумаг, дата погашения которых намечена на конец года.

Депозитная ставка – 10,5% годовых. Информация о ценных бумагах приведена в таблице.

  Ценная бумага 1 Ценная бумага 2 Ценная бумага 3
Выкупная цена 100,00р. 200,00р. 500,00р.
Дата соглашения 16 июня 15 июня 16 июня
Дата погашения 17 декабря 19 декабря 15 декабря
Цена продажи со скидкой 95,00р. 189,00р. 472,00р.

Найти скидку, действующую на указанные ценные бумаги, используя базис фактический/фактический. Определить, сколько каких ценных бумаг и на какую сумму может быть приобретено.

Рассчитать чистую прибыль в денежном эквиваленте для каждого из 4-х вариантов. Найти наиболее выгодный вариант вложения денег, обеспечивающий максимальную прибыль на каждый вложенный рубль.

Date: 2022-10-19; view: 1761; Нарушение авторских прав

§

Способы расчета амортизационных отчислений

Как известно, материальные фонды (недвижимость, транспортные средства, оборудование, станки, оргтехника и другие активы) имеют определенный срок службы. В процессе эксплуатации ресурс их вырабатывается, происходит износ и старение, соответственно уменьшается балансовая стоимость за счет амортизационных отчислений.

В соответствие с «Положением по бухгалтерскому учету (ПБУ 1-20)» амортизационные отчисления могут рассчитываться несколькими способами.

Линейный способ исходит из первоначальной стоимости или текущей (восстановительной) стоимости (в случае проведения переоценки) объекта основных средств, а также нормы амортизации, исчисленной исходя из срока полезного использования этого объекта.

Способ уменьшаемого остатка базируется на остаточной стоимости объекта основных средств на начало отчетного года и нормы амортизации, исчисленной исходя из срока полезного использования этого объекта и коэффициента ускорения, установленного в соответствие с законодательством.

Способ списания стоимости по сумме чисел лет срока полезного использования учитывает первоначальную стоимость или текущую (восстановительную) стоимость (в случае проведения переоценки) объекта основных средств и соотношение, в числителе которого число лет, остающихся до конца срока полезного использования объекта, а в знаменателе – сумма числа лет срока полезного использования объекта.

Способ списания стоимости пропорционально объему продукции (работ) обеспечивает начисление амортизационных отчислений исходя из натурального показателя объема продукции (работ) в отчетном периоде и соотношения первоначальной стоимости объекта основных средств и предполагаемого объема продукции (работ) за весь срок полезного использования объекта основных средств.

Финансовые функции расчета амортизации

Категория финансовых функций Excel обеспечивает расчет различных параметров при решении задач учета амортизации активов. Перечень таких функций соответственно представлен в табл. 1.6. В табл. 1.7 приведены описания аргументов функций.

Таблица 1.6– Финансовые функции учета параметров амортизации активов

Формат Назначение
АМОРУВ (стоимость;
дата_приобр;
первый_период;
остаточ_стоимость; период;
ставка; базис)
Возвращает при использовании французской системы бухгалтерского учета величину амортизации для каждого периода без учета зависимости коэффициента амортизации от периода амортизации актива.
АМОРУМ (стоимость;
дата_приобр; первый_период; остаточ_стоимость; период;
ставка; базис)
 
Возвращает при использовании французской системы бухгалтерского учета величину амортизации для каждого периода с учетом зависимости коэффициента амортизации от периода амортизации актива.
АПЛ (нач_стоимость;
остаточ_стоимость;
время_эксплуат)
Возвращает величину непосредственной амортизации актива за один период, рассчитанную линейным методом.
АСЧ (нач_стоимость;
остаточ_стоимость;
время_эксплуат; период)
Возвращает величину амортизации актива за данный период, рассчитанную методом «суммы (годовых) чисел».
ДДОБ (нач_стоимость;
остаточ_стоимость;
время_эксплуат; период;
коэффициент)
Возвращает значение амортизации актива за данный период, используя метод двойного уменьшения остатка или иной явно указанный метод.
ПУО (нач_стоимость;
остаточ_стоимость;
время_эксплуат; нач_период; кон_период; коэффициент; без_переключения)
Возвращает величину амортизации актива для любого выбранного периода, в том числе для частичных периодов, с использованием метода двойного уменьшения остатка или иного указанного метода.
ФУО (нач_стоимость;
остаточ_стоимость;
время_эксплуат;
период; месяцы)
Возвращает величину амортизации актива для заданного периода, рассчитанную методом фиксированного уменьшения остатка.

Таблица 1.7– Описание аргументов функций

Аргумент Назначение аргумента
БазисИспользуемый способ вычисления дня.
Без_переключенияЛогическое значение; определяет, следует ли использовать линейную амортизацию в случае, когда амортизация превышает величину, рассчитанную методом снижающегося остатка.
Время_эксплуат,
время_эксплуатации
Период амортизации, количество периодов, за которые собственность амортизируется.
Дата_приобрДата приобретения актива
Кон_периодНомер последнего периода, включенного в вычисления.
КоэффициентПроцентная ставка снижающегося остатка (по умолчанию – 2).
МесяцыКоличество месяцев в первом году эксплуатации (по умолчанию – 12).
Нач_периодНомер первого периода, включенного в вычисления.
Остаточ_стоимость, ост_стоимостьОстаточная стоимость актива в конце периода амортизации.
Первый_доходДата окончания первого периода.
Первый_периодДата окончания первого периода.
ПериодПериод амортизации
СтавкаПроцентная ставка за период амортизации.
Стоимость, нач_стоимостьЗатраты на приобретение актива.

Технология применения финансовых функций для расчета амортизационных отчислений

Date: 2022-10-19; view: 824; Нарушение авторских прав

§

§

Постановка задачи.

Организация сдает оборудование в аренду. Для более точного определения ее стоимости необходимо знать величину амортизационных отчислений, определяемых по методу двойного уменьшения остатка.

Переоценка оборудования перед сдачей в аренду определила его стоимость – 40 000 руб. Оставшийся срок эксплуатации – 3 года. Остаточная стоимость – 100 руб.

Рассчитать амортизационные отчисление на оборудование за первый и 365-й день аренды, первый, второй и пятый месяцы, первый год, а также некоторые периоды 2-го и 3-го годов.

Алгоритм решения задачи.

Поставленную задачу можно решить с помощью функций ПУО или ДДОБ, использующих метод двойного уменьшения остатка или иной явно указанный метод.

Функция ПУО возвращает величину амортизации актива для любого выбранного периода, в том числе для частичных и смежных периодов.

Функция ДДОБ возвращает значение амортизации актива за указанный период.

Форматы функций:

=ПУО (Нач_стоимость; Ост_стоимость; Время_эксплуатации; Нач_период;

Кон_период; Коэффициент; Без_переключения)

=ДДОБ (Нач_стоимость; Ост_стоимость; Время_эксплуатации;

Период; Коэффициент)

Описания функций требуют некоторого пояснения.

Аргументы Время_эксплуатации, Нач_период, Кон_период и Период всегда должны быть указаны в одних и тех же единицах.

Аргумент Коэффициент представляет собой процентную ставку снижающегося остатка. Если аргумент не указан (опущен), он полагается равным 2% (метод удвоенного процента со снижающегося остатка). Если нужно использовать другой метод вычисления амортизации, аргумент Коэффициент следует указать явно.

Аргумент Без_переключения представляет собой логическое значение, определяющее, следует ли при необходимости использовать линейную амортизацию. Если аргумент имеет значение ЛОЖЬ (или не задан), происходит автоматическое переключение на метод начисления линейной амортизации, если амортизация больше величины, рассчитанной методом снижающегося остатка. Если его значение ИСТИНА, переключение не происходит никогда.

Иллюстрация решения задачи с отображением введенных формул и полученных результатов приведена на рис. 1.36.

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России

Рисунок 1.36– Применение функций ДДОБ и ПУО для вычисления амортизации

Как видно, для первых периодов амортизационные отчисления, найденные с помощью функций ДДОБ и ПУО совпадают. Совпадения будут до середины срока эксплуатации, когда балансовая стоимость оборудования сравняется с остаточной стоимостью вследствие использования метода двойного уменьшения остатка.

Для последних периодов результаты разные. Функция ПУО перешла на метод начисления линейной амортизации, а функция ДДОБ продолжает вычисления по формуле, которую она реализует:

Решение задач - Основные тенденции развития инвестиционных процессов в экономике России (1.26)

Задания для самостоятельной работы

1. Приобретен объект основных средств стоимостью 200 000 руб. Срок полезного использования объекта – 5 лет. Используя линейный способ, рассчитать годовые амортизационные отчисления.

2. Приобретенная организацией за 25 000 долларов оргтехника имеет 6-летний срок полезного использования. Остаточная стоимость оргтехники в конце периода эксплуатации не будет превышать 500 долларов.

Применяя способ уменьшаемого остатка, рассчитать величину амортизационных отчислений за первый и второй годы.

Найти балансовую стоимость оргтехники на начало пятого года.

3. Применяя способ списания стоимости по сумме чисел лет срока полезного использования, найти годовые амортизационные отчисления для оборудования стоимостью 54 000 руб.Срок полезного использования оборудования – 8 лет. Остаточная стоимость – 1 800 руб.

Найти балансовую стоимость оборудования на начало каждого периода его эксплуатации.

4. На интенсивно используемое оборудование фирмы установлен коэффициент ускорения 3. Начальная стоимость оборудования – 125 000 руб. Остаточная стоимость – 5 000 руб. Установленный срок полезного использования – 5 лет.

Рассчитать амортизационные отчисления на оборудование за период со 2-го по 5-й месяц его эксплуатации.

Найти балансовую стоимость оборудования на начало 2-го года.

5. В марте текущего года принят на учет организации объект основных средств первоначальной стоимостью 210 000 руб. Срок полезного использования объекта – 7 лет.

Используя различные способы (линейный и уменьшаемого остатка), рассчитать величину амортизации объекта за все годы его эксплуатации. Определить балансовые стоимости объекта на начало календарных лет.

Результаты представить в графическом виде.

Date: 2022-10-19; view: 1450; Нарушение авторских прав

§

Табличный процессор Excel, безусловно, имеет широчайшие возможности по обработке данных, в том числе финансово-экономического характера. В данной книге авторы постарались эти возможности рассмотреть, иллюстрируя их необходимыми примерами и пояснениями. Однако какие-то моменты, безусловно, остались «за скобками». Что-то ускользнуло от внимания, другие вопросы были исключены преднамеренно, поскольку требовали включения в книгу сведений, непосредственно не имеющих отношения к финансово-экономической деятельности.

Практикум дает студентам опыт исследовательской работы, учит основам проектирования лабораторных моделей, знакомит с ме­тодами организации, планирования и обработки результатов экспе­риментов

Литература

1. Акинин П. В. Информационные системы в экономике. –М.: Кнорус, 2008. -256 с

2. Карлберг К. Бизнес-анализ с помощью Microsoft Excel. / Пер. с англ. –М.: Вильямс, 2005. -464 с.

3. Никольская Ю., Спиридонов А. Excel в помощь бухгалтеру и экономисту. –М.: Вершина, 2006. -256 с.

БОРЛАКОВА Амина Хисаевна

ПРОФЕССИОНАЛЬНО-ОРИЕНТИРОВАННЫЕ ЭКОНОМИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ

Учебно-методическое пособие для выполнения

лабораторных работ для студентов 4 курса,

обучающихся по направлению подготовки

230700.62 «Прикладная информатика в экономике»

Корректор Чагова О. Х.

Редактор Батчаева Д. Р.

Сдано в набор 07.04.2022 г.

Формат 60х84/16

Бумага офсетная

Печать офсетная

Усл. печ. л. 4,18

Заказ № 1686

Тираж 100 экз.

Оригинал-макет подготовлен

в Библиотечно-издательском центре СевКавГГТА

369000, г. Черкесск, ул. Ставропольская, 36

А. Х. Борлакова

Date: 2022-10-19; view: 666; Нарушение авторских прав

Оцените статью
Adblock
detector